The Pore-Lipid Interface: Role of Amino-Acid Determinants of Lipophilic Access by Ivabradine to the hERG1 Pore Domain
Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase o...
Gespeichert in:
Veröffentlicht in: | Molecular pharmacology 2019-08, Vol.96 (2), p.259-271 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 271 |
---|---|
container_issue | 2 |
container_start_page | 259 |
container_title | Molecular pharmacology |
container_volume | 96 |
creator | Perissinotti, Laura Guo, Jiqing Kudaibergenova, Meruyert Lees-Miller, James Ol’khovich, Marina Sharapova, Angelica Perlovich, German L. Muruve, Daniel A. Gerull, Brenda Noskov, Sergei Yu Duff, Henry J. |
description | Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase of the cardiac cycle that underlies myocyte repolarization detectable on the electrocardiogram. Even newly released drugs such as heart-rate lowering agent ivabradine block the rapid delayed rectifier current IKr, prolong action potential duration, and induce potentially lethal arrhythmia known as torsades de pointes. In this study, we describe a critical drug-binding pocket located at the lateral pore surface facing the cellular membrane. Mutations of the conserved M651 residue alter ivabradine-induced block but not by the common hERG1 blocker dofetilide. As revealed by molecular dynamics simulations, binding of ivabradine to a lipophilic pore access site is coupled to a state-dependent reorientation of aromatic residues F557 and F656 in the S5 and S6 helices. We show that the M651 mutation impedes state-dependent dynamics of F557 and F656 aromatic cassettes at the protein-lipid interface, which has a potential to disrupt drug-induced block of the channel. This fundamentally new mechanism coupling the channel dynamics and small-molecule access from the membrane into the hERG1 intracavitary site provides a simple rationale for the well established state-dependence of drug blockade.
The drug interference with the function of the cardiac hERG channels represents one of the major sources of drug-induced heart disturbances. We found a novel and a critical drug-binding pocket adjacent to a lipid-facing surface of the hERG1 channel, which furthers our molecular understanding of drug-induced QT syndrome.
▪ |
doi_str_mv | 10.1124/mol.118.115642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6666383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026895X24009052</els_id><sourcerecordid>2259352752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-87c5049849239438c8898c2d55715206373e9169c285942babdcbed25efb56ef3</originalsourceid><addsrcrecordid>eNp1Uc1LHDEUD9KiW-21R8mxl9F8TGYTD4VFrS4stIhCbyGTeeNGZpJtMrvgf99n10p7aCC8F34fL8mPkE-cnXEu6vMxDdho3KqpxQGZcSV4xTjn78iMMdFU2qgfR-RDKU-M8VppdkiOJEqEqsWMbO_XQL-nDNUqbEJHl3GC3DsPF_QuDUBTTxdjiKlaeESvAFE8ujiVFwg1abMOQ_B04T2UQttnuty5NrsuRKBTohP6r6_vbvjvKfQqjS7EE_K-d0OBj6_1mDx8vb6_vK1W326Wl4tV5RVTU6XnWGujayOkqaX2WhvtRafUHJ_JGjmXYHhjvNDK1KJ1bedb6ISCvlUN9PKYfNn7brbtCJ2HOGU32E0Oo8vPNrlg_0ViWNvHtLMNLqklGnx-Ncjp5xbKZMdQPAyDi5C2xQqhjFRirgRSz_ZUn1MpGfq3MZzZl6wsZoWNtvusUHD69-Xe6H_CQYLeEwC_aBcg2-IDRA9dyOAn26XwP-9ff4KiUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259352752</pqid></control><display><type>article</type><title>The Pore-Lipid Interface: Role of Amino-Acid Determinants of Lipophilic Access by Ivabradine to the hERG1 Pore Domain</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Perissinotti, Laura ; Guo, Jiqing ; Kudaibergenova, Meruyert ; Lees-Miller, James ; Ol’khovich, Marina ; Sharapova, Angelica ; Perlovich, German L. ; Muruve, Daniel A. ; Gerull, Brenda ; Noskov, Sergei Yu ; Duff, Henry J.</creator><creatorcontrib>Perissinotti, Laura ; Guo, Jiqing ; Kudaibergenova, Meruyert ; Lees-Miller, James ; Ol’khovich, Marina ; Sharapova, Angelica ; Perlovich, German L. ; Muruve, Daniel A. ; Gerull, Brenda ; Noskov, Sergei Yu ; Duff, Henry J.</creatorcontrib><description>Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase of the cardiac cycle that underlies myocyte repolarization detectable on the electrocardiogram. Even newly released drugs such as heart-rate lowering agent ivabradine block the rapid delayed rectifier current IKr, prolong action potential duration, and induce potentially lethal arrhythmia known as torsades de pointes. In this study, we describe a critical drug-binding pocket located at the lateral pore surface facing the cellular membrane. Mutations of the conserved M651 residue alter ivabradine-induced block but not by the common hERG1 blocker dofetilide. As revealed by molecular dynamics simulations, binding of ivabradine to a lipophilic pore access site is coupled to a state-dependent reorientation of aromatic residues F557 and F656 in the S5 and S6 helices. We show that the M651 mutation impedes state-dependent dynamics of F557 and F656 aromatic cassettes at the protein-lipid interface, which has a potential to disrupt drug-induced block of the channel. This fundamentally new mechanism coupling the channel dynamics and small-molecule access from the membrane into the hERG1 intracavitary site provides a simple rationale for the well established state-dependence of drug blockade.
The drug interference with the function of the cardiac hERG channels represents one of the major sources of drug-induced heart disturbances. We found a novel and a critical drug-binding pocket adjacent to a lipid-facing surface of the hERG1 channel, which furthers our molecular understanding of drug-induced QT syndrome.
▪</description><identifier>ISSN: 0026-895X</identifier><identifier>EISSN: 1521-0111</identifier><identifier>DOI: 10.1124/mol.118.115642</identifier><identifier>PMID: 31182542</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Binding Sites ; Ether-A-Go-Go Potassium Channels - chemistry ; Ether-A-Go-Go Potassium Channels - genetics ; Ether-A-Go-Go Potassium Channels - metabolism ; Humans ; Ivabradine - chemistry ; Ivabradine - pharmacology ; Membrane Lipids - metabolism ; Models, Molecular ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; Mutagenesis, Site-Directed ; Phenethylamines - pharmacology ; Protein Binding ; Protein Structure, Tertiary ; Sulfonamides - pharmacology</subject><ispartof>Molecular pharmacology, 2019-08, Vol.96 (2), p.259-271</ispartof><rights>2019 American Society for Pharmacology and Experimental Therapeutics</rights><rights>Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics.</rights><rights>Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-87c5049849239438c8898c2d55715206373e9169c285942babdcbed25efb56ef3</citedby><cites>FETCH-LOGICAL-c505t-87c5049849239438c8898c2d55715206373e9169c285942babdcbed25efb56ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31182542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perissinotti, Laura</creatorcontrib><creatorcontrib>Guo, Jiqing</creatorcontrib><creatorcontrib>Kudaibergenova, Meruyert</creatorcontrib><creatorcontrib>Lees-Miller, James</creatorcontrib><creatorcontrib>Ol’khovich, Marina</creatorcontrib><creatorcontrib>Sharapova, Angelica</creatorcontrib><creatorcontrib>Perlovich, German L.</creatorcontrib><creatorcontrib>Muruve, Daniel A.</creatorcontrib><creatorcontrib>Gerull, Brenda</creatorcontrib><creatorcontrib>Noskov, Sergei Yu</creatorcontrib><creatorcontrib>Duff, Henry J.</creatorcontrib><title>The Pore-Lipid Interface: Role of Amino-Acid Determinants of Lipophilic Access by Ivabradine to the hERG1 Pore Domain</title><title>Molecular pharmacology</title><addtitle>Mol Pharmacol</addtitle><description>Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase of the cardiac cycle that underlies myocyte repolarization detectable on the electrocardiogram. Even newly released drugs such as heart-rate lowering agent ivabradine block the rapid delayed rectifier current IKr, prolong action potential duration, and induce potentially lethal arrhythmia known as torsades de pointes. In this study, we describe a critical drug-binding pocket located at the lateral pore surface facing the cellular membrane. Mutations of the conserved M651 residue alter ivabradine-induced block but not by the common hERG1 blocker dofetilide. As revealed by molecular dynamics simulations, binding of ivabradine to a lipophilic pore access site is coupled to a state-dependent reorientation of aromatic residues F557 and F656 in the S5 and S6 helices. We show that the M651 mutation impedes state-dependent dynamics of F557 and F656 aromatic cassettes at the protein-lipid interface, which has a potential to disrupt drug-induced block of the channel. This fundamentally new mechanism coupling the channel dynamics and small-molecule access from the membrane into the hERG1 intracavitary site provides a simple rationale for the well established state-dependence of drug blockade.
The drug interference with the function of the cardiac hERG channels represents one of the major sources of drug-induced heart disturbances. We found a novel and a critical drug-binding pocket adjacent to a lipid-facing surface of the hERG1 channel, which furthers our molecular understanding of drug-induced QT syndrome.
▪</description><subject>Binding Sites</subject><subject>Ether-A-Go-Go Potassium Channels - chemistry</subject><subject>Ether-A-Go-Go Potassium Channels - genetics</subject><subject>Ether-A-Go-Go Potassium Channels - metabolism</subject><subject>Humans</subject><subject>Ivabradine - chemistry</subject><subject>Ivabradine - pharmacology</subject><subject>Membrane Lipids - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutagenesis, Site-Directed</subject><subject>Phenethylamines - pharmacology</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Sulfonamides - pharmacology</subject><issn>0026-895X</issn><issn>1521-0111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1Uc1LHDEUD9KiW-21R8mxl9F8TGYTD4VFrS4stIhCbyGTeeNGZpJtMrvgf99n10p7aCC8F34fL8mPkE-cnXEu6vMxDdho3KqpxQGZcSV4xTjn78iMMdFU2qgfR-RDKU-M8VppdkiOJEqEqsWMbO_XQL-nDNUqbEJHl3GC3DsPF_QuDUBTTxdjiKlaeESvAFE8ujiVFwg1abMOQ_B04T2UQttnuty5NrsuRKBTohP6r6_vbvjvKfQqjS7EE_K-d0OBj6_1mDx8vb6_vK1W326Wl4tV5RVTU6XnWGujayOkqaX2WhvtRafUHJ_JGjmXYHhjvNDK1KJ1bedb6ISCvlUN9PKYfNn7brbtCJ2HOGU32E0Oo8vPNrlg_0ViWNvHtLMNLqklGnx-Ncjp5xbKZMdQPAyDi5C2xQqhjFRirgRSz_ZUn1MpGfq3MZzZl6wsZoWNtvusUHD69-Xe6H_CQYLeEwC_aBcg2-IDRA9dyOAn26XwP-9ff4KiUw</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Perissinotti, Laura</creator><creator>Guo, Jiqing</creator><creator>Kudaibergenova, Meruyert</creator><creator>Lees-Miller, James</creator><creator>Ol’khovich, Marina</creator><creator>Sharapova, Angelica</creator><creator>Perlovich, German L.</creator><creator>Muruve, Daniel A.</creator><creator>Gerull, Brenda</creator><creator>Noskov, Sergei Yu</creator><creator>Duff, Henry J.</creator><general>Elsevier Inc</general><general>The American Society for Pharmacology and Experimental Therapeutics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190801</creationdate><title>The Pore-Lipid Interface: Role of Amino-Acid Determinants of Lipophilic Access by Ivabradine to the hERG1 Pore Domain</title><author>Perissinotti, Laura ; Guo, Jiqing ; Kudaibergenova, Meruyert ; Lees-Miller, James ; Ol’khovich, Marina ; Sharapova, Angelica ; Perlovich, German L. ; Muruve, Daniel A. ; Gerull, Brenda ; Noskov, Sergei Yu ; Duff, Henry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-87c5049849239438c8898c2d55715206373e9169c285942babdcbed25efb56ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binding Sites</topic><topic>Ether-A-Go-Go Potassium Channels - chemistry</topic><topic>Ether-A-Go-Go Potassium Channels - genetics</topic><topic>Ether-A-Go-Go Potassium Channels - metabolism</topic><topic>Humans</topic><topic>Ivabradine - chemistry</topic><topic>Ivabradine - pharmacology</topic><topic>Membrane Lipids - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutagenesis, Site-Directed</topic><topic>Phenethylamines - pharmacology</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Sulfonamides - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perissinotti, Laura</creatorcontrib><creatorcontrib>Guo, Jiqing</creatorcontrib><creatorcontrib>Kudaibergenova, Meruyert</creatorcontrib><creatorcontrib>Lees-Miller, James</creatorcontrib><creatorcontrib>Ol’khovich, Marina</creatorcontrib><creatorcontrib>Sharapova, Angelica</creatorcontrib><creatorcontrib>Perlovich, German L.</creatorcontrib><creatorcontrib>Muruve, Daniel A.</creatorcontrib><creatorcontrib>Gerull, Brenda</creatorcontrib><creatorcontrib>Noskov, Sergei Yu</creatorcontrib><creatorcontrib>Duff, Henry J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perissinotti, Laura</au><au>Guo, Jiqing</au><au>Kudaibergenova, Meruyert</au><au>Lees-Miller, James</au><au>Ol’khovich, Marina</au><au>Sharapova, Angelica</au><au>Perlovich, German L.</au><au>Muruve, Daniel A.</au><au>Gerull, Brenda</au><au>Noskov, Sergei Yu</au><au>Duff, Henry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Pore-Lipid Interface: Role of Amino-Acid Determinants of Lipophilic Access by Ivabradine to the hERG1 Pore Domain</atitle><jtitle>Molecular pharmacology</jtitle><addtitle>Mol Pharmacol</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>96</volume><issue>2</issue><spage>259</spage><epage>271</epage><pages>259-271</pages><issn>0026-895X</issn><eissn>1521-0111</eissn><abstract>Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase of the cardiac cycle that underlies myocyte repolarization detectable on the electrocardiogram. Even newly released drugs such as heart-rate lowering agent ivabradine block the rapid delayed rectifier current IKr, prolong action potential duration, and induce potentially lethal arrhythmia known as torsades de pointes. In this study, we describe a critical drug-binding pocket located at the lateral pore surface facing the cellular membrane. Mutations of the conserved M651 residue alter ivabradine-induced block but not by the common hERG1 blocker dofetilide. As revealed by molecular dynamics simulations, binding of ivabradine to a lipophilic pore access site is coupled to a state-dependent reorientation of aromatic residues F557 and F656 in the S5 and S6 helices. We show that the M651 mutation impedes state-dependent dynamics of F557 and F656 aromatic cassettes at the protein-lipid interface, which has a potential to disrupt drug-induced block of the channel. This fundamentally new mechanism coupling the channel dynamics and small-molecule access from the membrane into the hERG1 intracavitary site provides a simple rationale for the well established state-dependence of drug blockade.
The drug interference with the function of the cardiac hERG channels represents one of the major sources of drug-induced heart disturbances. We found a novel and a critical drug-binding pocket adjacent to a lipid-facing surface of the hERG1 channel, which furthers our molecular understanding of drug-induced QT syndrome.
▪</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31182542</pmid><doi>10.1124/mol.118.115642</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-895X |
ispartof | Molecular pharmacology, 2019-08, Vol.96 (2), p.259-271 |
issn | 0026-895X 1521-0111 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6666383 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Binding Sites Ether-A-Go-Go Potassium Channels - chemistry Ether-A-Go-Go Potassium Channels - genetics Ether-A-Go-Go Potassium Channels - metabolism Humans Ivabradine - chemistry Ivabradine - pharmacology Membrane Lipids - metabolism Models, Molecular Molecular Docking Simulation Molecular Dynamics Simulation Mutagenesis, Site-Directed Phenethylamines - pharmacology Protein Binding Protein Structure, Tertiary Sulfonamides - pharmacology |
title | The Pore-Lipid Interface: Role of Amino-Acid Determinants of Lipophilic Access by Ivabradine to the hERG1 Pore Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Pore-Lipid%20Interface:%20Role%20of%20Amino-Acid%20Determinants%20of%20Lipophilic%20Access%20by%20Ivabradine%20to%20the%20hERG1%20Pore%20Domain&rft.jtitle=Molecular%20pharmacology&rft.au=Perissinotti,%20Laura&rft.date=2019-08-01&rft.volume=96&rft.issue=2&rft.spage=259&rft.epage=271&rft.pages=259-271&rft.issn=0026-895X&rft.eissn=1521-0111&rft_id=info:doi/10.1124/mol.118.115642&rft_dat=%3Cproquest_pubme%3E2259352752%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259352752&rft_id=info:pmid/31182542&rft_els_id=S0026895X24009052&rfr_iscdi=true |