Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis
The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosi...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2009-01, Vol.29 (4), p.1163-1174 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1174 |
---|---|
container_issue | 4 |
container_start_page | 1163 |
container_title | The Journal of neuroscience |
container_volume | 29 |
creator | Rauscent, Aude Einum, James Le Ray, Didier Simmers, John Combes, Denis |
description | The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord. |
doi_str_mv | 10.1523/JNEUROSCI.5255-08.2009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6665137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66862058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-695208169f68ac86829f1e03d375e1dda786f75d0776578181063a2c7009c9313</originalsourceid><addsrcrecordid>eNpVkUtv1DAUhS0EokPhL1RescvgR_zIBqkKLRRNGYm2a8t1nImRYwc7YcSOn45HM2phdRf3O-ce3QPABUZrzAj98PXb1cP37V17s2aEsQrJNUGoeQFWZdtUpEb4JVghIlDFa1GfgTc5_0AICYTFa3CGGyy4JGwF_mynKWYXdvBydMGmnTPwNnaL17OLAcYefnJ5dsHM8G5yQXu4iSaOcY4Jti6Zxc0Z6tDB-8G6BK-XQhZh4dq4TP5g3C3p6D8N7tHpAG_trMeYpqEczm_Bq177bN-d5jl4uL66b79Um-3nm_ZyU5m6pnPFG0aQxLzpudRGlvBNjy2iHRXM4q7TQvJesA4JwZmQWGLEqSZGlK-YhmJ6Dj4efaflcbSdsWFO2qspuVGn3ypqp_7fBDeoXfylOOcMU1EM3p8MUvy52Dyr0WVjvdfBxiUXTnKCmCwgP4ImxZyT7Z-OYKQO5amn8tShPIWkOpRXhBf_RnyWndp6jjC43bB3yao8au8LjtV-vyeNqhXGnNK_0cemjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66862058</pqid></control><display><type>article</type><title>Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rauscent, Aude ; Einum, James ; Le Ray, Didier ; Simmers, John ; Combes, Denis</creator><creatorcontrib>Rauscent, Aude ; Einum, James ; Le Ray, Didier ; Simmers, John ; Combes, Denis</creatorcontrib><description>The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.5255-08.2009</identifier><identifier>PMID: 19176825</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Behavior, Animal ; Brain Stem - drug effects ; Brain Stem - growth & development ; In Vitro Techniques ; Locomotion - drug effects ; Locomotion - physiology ; Metamorphosis, Biological - drug effects ; Metamorphosis, Biological - physiology ; Nerve Net - drug effects ; Nerve Net - physiology ; Norepinephrine - pharmacology ; Serotonin - pharmacology ; Spinal Cord - drug effects ; Spinal Cord - growth & development ; Xenopus laevis - anatomy & histology ; Xenopus laevis - physiology</subject><ispartof>The Journal of neuroscience, 2009-01, Vol.29 (4), p.1163-1174</ispartof><rights>Copyright © 2009 Society for Neuroscience 0270-6474/09/291163-12$15.00/0 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-695208169f68ac86829f1e03d375e1dda786f75d0776578181063a2c7009c9313</citedby><cites>FETCH-LOGICAL-c443t-695208169f68ac86829f1e03d375e1dda786f75d0776578181063a2c7009c9313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665137/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665137/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19176825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rauscent, Aude</creatorcontrib><creatorcontrib>Einum, James</creatorcontrib><creatorcontrib>Le Ray, Didier</creatorcontrib><creatorcontrib>Simmers, John</creatorcontrib><creatorcontrib>Combes, Denis</creatorcontrib><title>Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord.</description><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Brain Stem - drug effects</subject><subject>Brain Stem - growth & development</subject><subject>In Vitro Techniques</subject><subject>Locomotion - drug effects</subject><subject>Locomotion - physiology</subject><subject>Metamorphosis, Biological - drug effects</subject><subject>Metamorphosis, Biological - physiology</subject><subject>Nerve Net - drug effects</subject><subject>Nerve Net - physiology</subject><subject>Norepinephrine - pharmacology</subject><subject>Serotonin - pharmacology</subject><subject>Spinal Cord - drug effects</subject><subject>Spinal Cord - growth & development</subject><subject>Xenopus laevis - anatomy & histology</subject><subject>Xenopus laevis - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtv1DAUhS0EokPhL1RescvgR_zIBqkKLRRNGYm2a8t1nImRYwc7YcSOn45HM2phdRf3O-ce3QPABUZrzAj98PXb1cP37V17s2aEsQrJNUGoeQFWZdtUpEb4JVghIlDFa1GfgTc5_0AICYTFa3CGGyy4JGwF_mynKWYXdvBydMGmnTPwNnaL17OLAcYefnJ5dsHM8G5yQXu4iSaOcY4Jti6Zxc0Z6tDB-8G6BK-XQhZh4dq4TP5g3C3p6D8N7tHpAG_trMeYpqEczm_Bq177bN-d5jl4uL66b79Um-3nm_ZyU5m6pnPFG0aQxLzpudRGlvBNjy2iHRXM4q7TQvJesA4JwZmQWGLEqSZGlK-YhmJ6Dj4efaflcbSdsWFO2qspuVGn3ypqp_7fBDeoXfylOOcMU1EM3p8MUvy52Dyr0WVjvdfBxiUXTnKCmCwgP4ImxZyT7Z-OYKQO5amn8tShPIWkOpRXhBf_RnyWndp6jjC43bB3yao8au8LjtV-vyeNqhXGnNK_0cemjQ</recordid><startdate>20090128</startdate><enddate>20090128</enddate><creator>Rauscent, Aude</creator><creator>Einum, James</creator><creator>Le Ray, Didier</creator><creator>Simmers, John</creator><creator>Combes, Denis</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090128</creationdate><title>Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis</title><author>Rauscent, Aude ; Einum, James ; Le Ray, Didier ; Simmers, John ; Combes, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-695208169f68ac86829f1e03d375e1dda786f75d0776578181063a2c7009c9313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Brain Stem - drug effects</topic><topic>Brain Stem - growth & development</topic><topic>In Vitro Techniques</topic><topic>Locomotion - drug effects</topic><topic>Locomotion - physiology</topic><topic>Metamorphosis, Biological - drug effects</topic><topic>Metamorphosis, Biological - physiology</topic><topic>Nerve Net - drug effects</topic><topic>Nerve Net - physiology</topic><topic>Norepinephrine - pharmacology</topic><topic>Serotonin - pharmacology</topic><topic>Spinal Cord - drug effects</topic><topic>Spinal Cord - growth & development</topic><topic>Xenopus laevis - anatomy & histology</topic><topic>Xenopus laevis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rauscent, Aude</creatorcontrib><creatorcontrib>Einum, James</creatorcontrib><creatorcontrib>Le Ray, Didier</creatorcontrib><creatorcontrib>Simmers, John</creatorcontrib><creatorcontrib>Combes, Denis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rauscent, Aude</au><au>Einum, James</au><au>Le Ray, Didier</au><au>Simmers, John</au><au>Combes, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2009-01-28</date><risdate>2009</risdate><volume>29</volume><issue>4</issue><spage>1163</spage><epage>1174</epage><pages>1163-1174</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>19176825</pmid><doi>10.1523/JNEUROSCI.5255-08.2009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2009-01, Vol.29 (4), p.1163-1174 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6665137 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Behavior, Animal Brain Stem - drug effects Brain Stem - growth & development In Vitro Techniques Locomotion - drug effects Locomotion - physiology Metamorphosis, Biological - drug effects Metamorphosis, Biological - physiology Nerve Net - drug effects Nerve Net - physiology Norepinephrine - pharmacology Serotonin - pharmacology Spinal Cord - drug effects Spinal Cord - growth & development Xenopus laevis - anatomy & histology Xenopus laevis - physiology |
title | Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opposing%20Aminergic%20Modulation%20of%20Distinct%20Spinal%20Locomotor%20Circuits%20and%20Their%20Functional%20Coupling%20during%20Amphibian%20Metamorphosis&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Rauscent,%20Aude&rft.date=2009-01-28&rft.volume=29&rft.issue=4&rft.spage=1163&rft.epage=1174&rft.pages=1163-1174&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.5255-08.2009&rft_dat=%3Cproquest_pubme%3E66862058%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66862058&rft_id=info:pmid/19176825&rfr_iscdi=true |