Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis

The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2009-01, Vol.29 (4), p.1163-1174
Hauptverfasser: Rauscent, Aude, Einum, James, Le Ray, Didier, Simmers, John, Combes, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1174
container_issue 4
container_start_page 1163
container_title The Journal of neuroscience
container_volume 29
creator Rauscent, Aude
Einum, James
Le Ray, Didier
Simmers, John
Combes, Denis
description The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord.
doi_str_mv 10.1523/JNEUROSCI.5255-08.2009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6665137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66862058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-695208169f68ac86829f1e03d375e1dda786f75d0776578181063a2c7009c9313</originalsourceid><addsrcrecordid>eNpVkUtv1DAUhS0EokPhL1RescvgR_zIBqkKLRRNGYm2a8t1nImRYwc7YcSOn45HM2phdRf3O-ce3QPABUZrzAj98PXb1cP37V17s2aEsQrJNUGoeQFWZdtUpEb4JVghIlDFa1GfgTc5_0AICYTFa3CGGyy4JGwF_mynKWYXdvBydMGmnTPwNnaL17OLAcYefnJ5dsHM8G5yQXu4iSaOcY4Jti6Zxc0Z6tDB-8G6BK-XQhZh4dq4TP5g3C3p6D8N7tHpAG_trMeYpqEczm_Bq177bN-d5jl4uL66b79Um-3nm_ZyU5m6pnPFG0aQxLzpudRGlvBNjy2iHRXM4q7TQvJesA4JwZmQWGLEqSZGlK-YhmJ6Dj4efaflcbSdsWFO2qspuVGn3ypqp_7fBDeoXfylOOcMU1EM3p8MUvy52Dyr0WVjvdfBxiUXTnKCmCwgP4ImxZyT7Z-OYKQO5amn8tShPIWkOpRXhBf_RnyWndp6jjC43bB3yao8au8LjtV-vyeNqhXGnNK_0cemjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66862058</pqid></control><display><type>article</type><title>Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rauscent, Aude ; Einum, James ; Le Ray, Didier ; Simmers, John ; Combes, Denis</creator><creatorcontrib>Rauscent, Aude ; Einum, James ; Le Ray, Didier ; Simmers, John ; Combes, Denis</creatorcontrib><description>The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.5255-08.2009</identifier><identifier>PMID: 19176825</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Behavior, Animal ; Brain Stem - drug effects ; Brain Stem - growth &amp; development ; In Vitro Techniques ; Locomotion - drug effects ; Locomotion - physiology ; Metamorphosis, Biological - drug effects ; Metamorphosis, Biological - physiology ; Nerve Net - drug effects ; Nerve Net - physiology ; Norepinephrine - pharmacology ; Serotonin - pharmacology ; Spinal Cord - drug effects ; Spinal Cord - growth &amp; development ; Xenopus laevis - anatomy &amp; histology ; Xenopus laevis - physiology</subject><ispartof>The Journal of neuroscience, 2009-01, Vol.29 (4), p.1163-1174</ispartof><rights>Copyright © 2009 Society for Neuroscience 0270-6474/09/291163-12$15.00/0 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-695208169f68ac86829f1e03d375e1dda786f75d0776578181063a2c7009c9313</citedby><cites>FETCH-LOGICAL-c443t-695208169f68ac86829f1e03d375e1dda786f75d0776578181063a2c7009c9313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665137/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665137/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19176825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rauscent, Aude</creatorcontrib><creatorcontrib>Einum, James</creatorcontrib><creatorcontrib>Le Ray, Didier</creatorcontrib><creatorcontrib>Simmers, John</creatorcontrib><creatorcontrib>Combes, Denis</creatorcontrib><title>Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord.</description><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Brain Stem - drug effects</subject><subject>Brain Stem - growth &amp; development</subject><subject>In Vitro Techniques</subject><subject>Locomotion - drug effects</subject><subject>Locomotion - physiology</subject><subject>Metamorphosis, Biological - drug effects</subject><subject>Metamorphosis, Biological - physiology</subject><subject>Nerve Net - drug effects</subject><subject>Nerve Net - physiology</subject><subject>Norepinephrine - pharmacology</subject><subject>Serotonin - pharmacology</subject><subject>Spinal Cord - drug effects</subject><subject>Spinal Cord - growth &amp; development</subject><subject>Xenopus laevis - anatomy &amp; histology</subject><subject>Xenopus laevis - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtv1DAUhS0EokPhL1RescvgR_zIBqkKLRRNGYm2a8t1nImRYwc7YcSOn45HM2phdRf3O-ce3QPABUZrzAj98PXb1cP37V17s2aEsQrJNUGoeQFWZdtUpEb4JVghIlDFa1GfgTc5_0AICYTFa3CGGyy4JGwF_mynKWYXdvBydMGmnTPwNnaL17OLAcYefnJ5dsHM8G5yQXu4iSaOcY4Jti6Zxc0Z6tDB-8G6BK-XQhZh4dq4TP5g3C3p6D8N7tHpAG_trMeYpqEczm_Bq177bN-d5jl4uL66b79Um-3nm_ZyU5m6pnPFG0aQxLzpudRGlvBNjy2iHRXM4q7TQvJesA4JwZmQWGLEqSZGlK-YhmJ6Dj4efaflcbSdsWFO2qspuVGn3ypqp_7fBDeoXfylOOcMU1EM3p8MUvy52Dyr0WVjvdfBxiUXTnKCmCwgP4ImxZyT7Z-OYKQO5amn8tShPIWkOpRXhBf_RnyWndp6jjC43bB3yao8au8LjtV-vyeNqhXGnNK_0cemjQ</recordid><startdate>20090128</startdate><enddate>20090128</enddate><creator>Rauscent, Aude</creator><creator>Einum, James</creator><creator>Le Ray, Didier</creator><creator>Simmers, John</creator><creator>Combes, Denis</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090128</creationdate><title>Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis</title><author>Rauscent, Aude ; Einum, James ; Le Ray, Didier ; Simmers, John ; Combes, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-695208169f68ac86829f1e03d375e1dda786f75d0776578181063a2c7009c9313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Brain Stem - drug effects</topic><topic>Brain Stem - growth &amp; development</topic><topic>In Vitro Techniques</topic><topic>Locomotion - drug effects</topic><topic>Locomotion - physiology</topic><topic>Metamorphosis, Biological - drug effects</topic><topic>Metamorphosis, Biological - physiology</topic><topic>Nerve Net - drug effects</topic><topic>Nerve Net - physiology</topic><topic>Norepinephrine - pharmacology</topic><topic>Serotonin - pharmacology</topic><topic>Spinal Cord - drug effects</topic><topic>Spinal Cord - growth &amp; development</topic><topic>Xenopus laevis - anatomy &amp; histology</topic><topic>Xenopus laevis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rauscent, Aude</creatorcontrib><creatorcontrib>Einum, James</creatorcontrib><creatorcontrib>Le Ray, Didier</creatorcontrib><creatorcontrib>Simmers, John</creatorcontrib><creatorcontrib>Combes, Denis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rauscent, Aude</au><au>Einum, James</au><au>Le Ray, Didier</au><au>Simmers, John</au><au>Combes, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2009-01-28</date><risdate>2009</risdate><volume>29</volume><issue>4</issue><spage>1163</spage><epage>1174</epage><pages>1163-1174</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>19176825</pmid><doi>10.1523/JNEUROSCI.5255-08.2009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2009-01, Vol.29 (4), p.1163-1174
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6665137
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Behavior, Animal
Brain Stem - drug effects
Brain Stem - growth & development
In Vitro Techniques
Locomotion - drug effects
Locomotion - physiology
Metamorphosis, Biological - drug effects
Metamorphosis, Biological - physiology
Nerve Net - drug effects
Nerve Net - physiology
Norepinephrine - pharmacology
Serotonin - pharmacology
Spinal Cord - drug effects
Spinal Cord - growth & development
Xenopus laevis - anatomy & histology
Xenopus laevis - physiology
title Opposing Aminergic Modulation of Distinct Spinal Locomotor Circuits and Their Functional Coupling during Amphibian Metamorphosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opposing%20Aminergic%20Modulation%20of%20Distinct%20Spinal%20Locomotor%20Circuits%20and%20Their%20Functional%20Coupling%20during%20Amphibian%20Metamorphosis&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Rauscent,%20Aude&rft.date=2009-01-28&rft.volume=29&rft.issue=4&rft.spage=1163&rft.epage=1174&rft.pages=1163-1174&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.5255-08.2009&rft_dat=%3Cproquest_pubme%3E66862058%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66862058&rft_id=info:pmid/19176825&rfr_iscdi=true