Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability

O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-07, Vol.116 (30), p.14961-14970
Hauptverfasser: Pravat, Veronica M., Muh, Villo, Gundogd, Mehmet, Ferenbac, Andrew T., Kakad, Poonam S., Vandad, Vasudha, Wilme, Ariane C., Borodki, Vladimir S., Jos, Shelagh, Stavridi, Marios P., van Aalten, Daan M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14970
container_issue 30
container_start_page 14961
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Pravat, Veronica M.
Muh, Villo
Gundogd, Mehmet
Ferenbac, Andrew T.
Kakad, Poonam S.
Vandad, Vasudha
Wilme, Ariane C.
Borodki, Vladimir S.
Jos, Shelagh
Stavridi, Marios P.
van Aalten, Daan M. F.
description O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein–protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T > A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.
doi_str_mv 10.1073/pnas.1900065116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26848316</jstor_id><sourcerecordid>26848316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-7087ff468d2028905e665422c1b44643ed4c53efe695869e4b2a6e733b8822133</originalsourceid><addsrcrecordid>eNpVkb1PHDEQxa0oKBwkdSoil2kWxt_eJhI68SUhaCBKZ3m9s8Hg272sfUj332dPBwdUU8xv3ryZR8h3BscMjDhZ9j4fsxoAtGJMfyIzBjWrtKzhM5kBcFNZyeU-Ocj5caJqZeEL2ReM11ppMSO_5774tC4x0Ba7GCL2YU2Hjt5WFyncnAZaRt_nDkefkSb0baZloH-qFPsnbGnsC6aEoax8om3MvokplvVXstf5lPHbSz0k9-dnd_PL6vr24mp-el0FyVSpDFjTdVLblgO3NSjUWknOA2uk1FJgK4MS2KGejOsaZcO9RiNEYy3nTIhD8muru1w1C2wD9pPd5JZjXPhx7QYf3cdOHx_c3-HZaa3BKJgEfr4IjMO_FebiFjGH6STf47DKjnNlDEgwG_Rki4ZxyHnEbreGgduk4TZpuLc0pokf793t-Nf3T8DRFnjMZRh3fa6ttGIS-A_wU4_m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257704070</pqid></control><display><type>article</type><title>Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pravat, Veronica M. ; Muh, Villo ; Gundogd, Mehmet ; Ferenbac, Andrew T. ; Kakad, Poonam S. ; Vandad, Vasudha ; Wilme, Ariane C. ; Borodki, Vladimir S. ; Jos, Shelagh ; Stavridi, Marios P. ; van Aalten, Daan M. F.</creator><creatorcontrib>Pravat, Veronica M. ; Muh, Villo ; Gundogd, Mehmet ; Ferenbac, Andrew T. ; Kakad, Poonam S. ; Vandad, Vasudha ; Wilme, Ariane C. ; Borodki, Vladimir S. ; Jos, Shelagh ; Stavridi, Marios P. ; van Aalten, Daan M. F.</creatorcontrib><description>O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein–protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T &gt; A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1900065116</identifier><identifier>PMID: 31296563</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Catalytic Domain ; Cell Line ; Drosophila ; Female ; Genetic Diseases, X-Linked - genetics ; Genetic Diseases, X-Linked - pathology ; Host Cell Factor C1 - metabolism ; Humans ; Intellectual Disability - genetics ; Intellectual Disability - pathology ; Loss of Function Mutation ; Mice ; N-Acetylglucosaminyltransferases - chemistry ; N-Acetylglucosaminyltransferases - genetics ; N-Acetylglucosaminyltransferases - metabolism ; Neurogenesis ; PNAS Plus ; Point Mutation ; Twins, Monozygotic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-07, Vol.116 (30), p.14961-14970</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-7087ff468d2028905e665422c1b44643ed4c53efe695869e4b2a6e733b8822133</citedby><cites>FETCH-LOGICAL-c415t-7087ff468d2028905e665422c1b44643ed4c53efe695869e4b2a6e733b8822133</cites><orcidid>0000-0002-0081-9310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26848316$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26848316$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31296563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pravat, Veronica M.</creatorcontrib><creatorcontrib>Muh, Villo</creatorcontrib><creatorcontrib>Gundogd, Mehmet</creatorcontrib><creatorcontrib>Ferenbac, Andrew T.</creatorcontrib><creatorcontrib>Kakad, Poonam S.</creatorcontrib><creatorcontrib>Vandad, Vasudha</creatorcontrib><creatorcontrib>Wilme, Ariane C.</creatorcontrib><creatorcontrib>Borodki, Vladimir S.</creatorcontrib><creatorcontrib>Jos, Shelagh</creatorcontrib><creatorcontrib>Stavridi, Marios P.</creatorcontrib><creatorcontrib>van Aalten, Daan M. F.</creatorcontrib><title>Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein–protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T &gt; A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Catalytic Domain</subject><subject>Cell Line</subject><subject>Drosophila</subject><subject>Female</subject><subject>Genetic Diseases, X-Linked - genetics</subject><subject>Genetic Diseases, X-Linked - pathology</subject><subject>Host Cell Factor C1 - metabolism</subject><subject>Humans</subject><subject>Intellectual Disability - genetics</subject><subject>Intellectual Disability - pathology</subject><subject>Loss of Function Mutation</subject><subject>Mice</subject><subject>N-Acetylglucosaminyltransferases - chemistry</subject><subject>N-Acetylglucosaminyltransferases - genetics</subject><subject>N-Acetylglucosaminyltransferases - metabolism</subject><subject>Neurogenesis</subject><subject>PNAS Plus</subject><subject>Point Mutation</subject><subject>Twins, Monozygotic</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkb1PHDEQxa0oKBwkdSoil2kWxt_eJhI68SUhaCBKZ3m9s8Hg272sfUj332dPBwdUU8xv3ryZR8h3BscMjDhZ9j4fsxoAtGJMfyIzBjWrtKzhM5kBcFNZyeU-Ocj5caJqZeEL2ReM11ppMSO_5774tC4x0Ba7GCL2YU2Hjt5WFyncnAZaRt_nDkefkSb0baZloH-qFPsnbGnsC6aEoax8om3MvokplvVXstf5lPHbSz0k9-dnd_PL6vr24mp-el0FyVSpDFjTdVLblgO3NSjUWknOA2uk1FJgK4MS2KGejOsaZcO9RiNEYy3nTIhD8muru1w1C2wD9pPd5JZjXPhx7QYf3cdOHx_c3-HZaa3BKJgEfr4IjMO_FebiFjGH6STf47DKjnNlDEgwG_Rki4ZxyHnEbreGgduk4TZpuLc0pokf793t-Nf3T8DRFnjMZRh3fa6ttGIS-A_wU4_m</recordid><startdate>20190723</startdate><enddate>20190723</enddate><creator>Pravat, Veronica M.</creator><creator>Muh, Villo</creator><creator>Gundogd, Mehmet</creator><creator>Ferenbac, Andrew T.</creator><creator>Kakad, Poonam S.</creator><creator>Vandad, Vasudha</creator><creator>Wilme, Ariane C.</creator><creator>Borodki, Vladimir S.</creator><creator>Jos, Shelagh</creator><creator>Stavridi, Marios P.</creator><creator>van Aalten, Daan M. F.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0081-9310</orcidid></search><sort><creationdate>20190723</creationdate><title>Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability</title><author>Pravat, Veronica M. ; Muh, Villo ; Gundogd, Mehmet ; Ferenbac, Andrew T. ; Kakad, Poonam S. ; Vandad, Vasudha ; Wilme, Ariane C. ; Borodki, Vladimir S. ; Jos, Shelagh ; Stavridi, Marios P. ; van Aalten, Daan M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-7087ff468d2028905e665422c1b44643ed4c53efe695869e4b2a6e733b8822133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Catalytic Domain</topic><topic>Cell Line</topic><topic>Drosophila</topic><topic>Female</topic><topic>Genetic Diseases, X-Linked - genetics</topic><topic>Genetic Diseases, X-Linked - pathology</topic><topic>Host Cell Factor C1 - metabolism</topic><topic>Humans</topic><topic>Intellectual Disability - genetics</topic><topic>Intellectual Disability - pathology</topic><topic>Loss of Function Mutation</topic><topic>Mice</topic><topic>N-Acetylglucosaminyltransferases - chemistry</topic><topic>N-Acetylglucosaminyltransferases - genetics</topic><topic>N-Acetylglucosaminyltransferases - metabolism</topic><topic>Neurogenesis</topic><topic>PNAS Plus</topic><topic>Point Mutation</topic><topic>Twins, Monozygotic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pravat, Veronica M.</creatorcontrib><creatorcontrib>Muh, Villo</creatorcontrib><creatorcontrib>Gundogd, Mehmet</creatorcontrib><creatorcontrib>Ferenbac, Andrew T.</creatorcontrib><creatorcontrib>Kakad, Poonam S.</creatorcontrib><creatorcontrib>Vandad, Vasudha</creatorcontrib><creatorcontrib>Wilme, Ariane C.</creatorcontrib><creatorcontrib>Borodki, Vladimir S.</creatorcontrib><creatorcontrib>Jos, Shelagh</creatorcontrib><creatorcontrib>Stavridi, Marios P.</creatorcontrib><creatorcontrib>van Aalten, Daan M. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pravat, Veronica M.</au><au>Muh, Villo</au><au>Gundogd, Mehmet</au><au>Ferenbac, Andrew T.</au><au>Kakad, Poonam S.</au><au>Vandad, Vasudha</au><au>Wilme, Ariane C.</au><au>Borodki, Vladimir S.</au><au>Jos, Shelagh</au><au>Stavridi, Marios P.</au><au>van Aalten, Daan M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-07-23</date><risdate>2019</risdate><volume>116</volume><issue>30</issue><spage>14961</spage><epage>14970</epage><pages>14961-14970</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein–protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T &gt; A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31296563</pmid><doi>10.1073/pnas.1900065116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0081-9310</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-07, Vol.116 (30), p.14961-14970
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660750
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Catalytic Domain
Cell Line
Drosophila
Female
Genetic Diseases, X-Linked - genetics
Genetic Diseases, X-Linked - pathology
Host Cell Factor C1 - metabolism
Humans
Intellectual Disability - genetics
Intellectual Disability - pathology
Loss of Function Mutation
Mice
N-Acetylglucosaminyltransferases - chemistry
N-Acetylglucosaminyltransferases - genetics
N-Acetylglucosaminyltransferases - metabolism
Neurogenesis
PNAS Plus
Point Mutation
Twins, Monozygotic
title Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20deficiency%20of%20O-GlcNAc%20transferase%20leads%20to%20X-linked%20intellectual%20disability&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pravat,%20Veronica%20M.&rft.date=2019-07-23&rft.volume=116&rft.issue=30&rft.spage=14961&rft.epage=14970&rft.pages=14961-14970&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1900065116&rft_dat=%3Cjstor_pubme%3E26848316%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257704070&rft_id=info:pmid/31296563&rft_jstor_id=26848316&rfr_iscdi=true