Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma

Targeting the B-cell receptor and phosphatidylinositol 3-kinase/mTOR signaling pathways has shown meaningful, but incomplete, antitumor activity in lymphoma. Glycogen synthase kinase 3 (GSK3) α and β are 2 homologous and functionally overlapping serine/threonine kinases that phosphorylate multiple p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2019-07, Vol.134 (4), p.363-373
Hauptverfasser: Wu, Xiaosheng, Stenson, Mary, Abeykoon, Jithma, Nowakowski, Kevin, Zhang, Lianwen, Lawson, Joshua, Wellik, Linda, Li, Ying, Krull, Jordan, Wenzl, Kerstin, Novak, Anne J., Ansell, Stephen M., Bishop, Gail A., Billadeau, Daniel D., Peng, Kah Whye, Giles, Francis, Schmitt, Daniel M., Witzig, Thomas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 373
container_issue 4
container_start_page 363
container_title Blood
container_volume 134
creator Wu, Xiaosheng
Stenson, Mary
Abeykoon, Jithma
Nowakowski, Kevin
Zhang, Lianwen
Lawson, Joshua
Wellik, Linda
Li, Ying
Krull, Jordan
Wenzl, Kerstin
Novak, Anne J.
Ansell, Stephen M.
Bishop, Gail A.
Billadeau, Daniel D.
Peng, Kah Whye
Giles, Francis
Schmitt, Daniel M.
Witzig, Thomas E.
description Targeting the B-cell receptor and phosphatidylinositol 3-kinase/mTOR signaling pathways has shown meaningful, but incomplete, antitumor activity in lymphoma. Glycogen synthase kinase 3 (GSK3) α and β are 2 homologous and functionally overlapping serine/threonine kinases that phosphorylate multiple protein substrates in several key signaling pathways. To date, no agent targeting GSK3 has been approved for lymphoma therapy. We show that lymphoma cells abundantly express GSK3α and GSK3β compared with normal B and T lymphocytes at the messenger RNA and protein levels. Utilizing a new GSK3 inhibitor 9-ING-41 and by genetic deletion of GSK3α and GSK3β genes using CRISPR/CAS9 knockout, GSK3 was demonstrated to be functionally important to lymphoma cell growth and proliferation. GSK3β binds to centrosomes and microtubules, and lymphoma cells treated with 9-ING-41 become arrested in mitotic prophase, supporting the notion that GSK3β is necessary for the progression of mitosis. By analyzing recently published RNA sequencing data on 234 diffuse large B-cell lymphoma patients, we found that higher expression of GSK3α or GSK3β correlates well with shorter overall survival. These data provide rationale for testing GSK3 inhibitors in lymphoma patient trials. •GSK3 is overexpressed in, and functionally exploited by, lymphoma cells.•New GSK3 inhibitor 9-ING-41 induces apoptosis and cell cycle arrest at prophase by targeting centrosomes and microtubule-bound GSK3β. [Display omitted]
doi_str_mv 10.1182/blood.2018874560
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6659256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120423845</els_id><sourcerecordid>S0006497120423845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-ba1746998706be3a5def05c2b86ad246698836e6ee08d1b5ad363f50570a2a243</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwM6H8gZSzEzsOAxKqgCJVYimz5TiXxJDYlZNW6r-npXwOTO9w9z6newi5pDClVLLrovW-nDKgUmYpF3BExpQzGQMwOCZjABBxmmd0RM76_hWApgnjp2SUUApUMDom86UONQ7W1VHdbo2v0UX91g2N7jF6s24fSVT5EA0NBr3C9WBNVKDDyg6RdVG77VaN7_Q5Oal02-PFZ07Iy8P9cjaPF8-PT7O7RWzSNBviQtMsFXkuMxAFJpqXWAE3rJBClywVIpcyESgQQZa04LpMRFJx4BloplmaTMjtgbtaFx2WBt0QdKtWwXY6bJXXVv2dONuo2m-UEDxnXOwAcACY4Ps-YPXdpaD2VtWHVfVjdVe5-n3zu_Clcbdwc1jA3ecbi0H1xqIzWNqAZlClt__T3wH9zojz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Wu, Xiaosheng ; Stenson, Mary ; Abeykoon, Jithma ; Nowakowski, Kevin ; Zhang, Lianwen ; Lawson, Joshua ; Wellik, Linda ; Li, Ying ; Krull, Jordan ; Wenzl, Kerstin ; Novak, Anne J. ; Ansell, Stephen M. ; Bishop, Gail A. ; Billadeau, Daniel D. ; Peng, Kah Whye ; Giles, Francis ; Schmitt, Daniel M. ; Witzig, Thomas E.</creator><creatorcontrib>Wu, Xiaosheng ; Stenson, Mary ; Abeykoon, Jithma ; Nowakowski, Kevin ; Zhang, Lianwen ; Lawson, Joshua ; Wellik, Linda ; Li, Ying ; Krull, Jordan ; Wenzl, Kerstin ; Novak, Anne J. ; Ansell, Stephen M. ; Bishop, Gail A. ; Billadeau, Daniel D. ; Peng, Kah Whye ; Giles, Francis ; Schmitt, Daniel M. ; Witzig, Thomas E.</creatorcontrib><description>Targeting the B-cell receptor and phosphatidylinositol 3-kinase/mTOR signaling pathways has shown meaningful, but incomplete, antitumor activity in lymphoma. Glycogen synthase kinase 3 (GSK3) α and β are 2 homologous and functionally overlapping serine/threonine kinases that phosphorylate multiple protein substrates in several key signaling pathways. To date, no agent targeting GSK3 has been approved for lymphoma therapy. We show that lymphoma cells abundantly express GSK3α and GSK3β compared with normal B and T lymphocytes at the messenger RNA and protein levels. Utilizing a new GSK3 inhibitor 9-ING-41 and by genetic deletion of GSK3α and GSK3β genes using CRISPR/CAS9 knockout, GSK3 was demonstrated to be functionally important to lymphoma cell growth and proliferation. GSK3β binds to centrosomes and microtubules, and lymphoma cells treated with 9-ING-41 become arrested in mitotic prophase, supporting the notion that GSK3β is necessary for the progression of mitosis. By analyzing recently published RNA sequencing data on 234 diffuse large B-cell lymphoma patients, we found that higher expression of GSK3α or GSK3β correlates well with shorter overall survival. These data provide rationale for testing GSK3 inhibitors in lymphoma patient trials. •GSK3 is overexpressed in, and functionally exploited by, lymphoma cells.•New GSK3 inhibitor 9-ING-41 induces apoptosis and cell cycle arrest at prophase by targeting centrosomes and microtubule-bound GSK3β. [Display omitted]</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood.2018874560</identifier><identifier>PMID: 31101621</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biomarkers, Tumor ; Cell Cycle Checkpoints - drug effects ; Cell Cycle Checkpoints - genetics ; Cell Line, Tumor ; Cell Proliferation - genetics ; Cell Survival - genetics ; Disease Models, Animal ; Gene Expression ; Gene Targeting - methods ; Glycogen Synthase Kinase 3 - antagonists &amp; inhibitors ; Glycogen Synthase Kinase 3 - genetics ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta - genetics ; Glycogen Synthase Kinase 3 beta - metabolism ; Humans ; Indoles - pharmacology ; Lymphoid Neoplasia ; Lymphoma - diagnosis ; Lymphoma - etiology ; Lymphoma - mortality ; Lymphoma - therapy ; Maleimides - pharmacology ; Mice ; Mice, Transgenic ; Mitosis - drug effects ; Mitosis - genetics ; Molecular Targeted Therapy - adverse effects ; Molecular Targeted Therapy - methods ; Spindle Apparatus - drug effects ; Treatment Outcome ; Xenograft Model Antitumor Assays</subject><ispartof>Blood, 2019-07, Vol.134 (4), p.363-373</ispartof><rights>2019 American Society of Hematology</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-ba1746998706be3a5def05c2b86ad246698836e6ee08d1b5ad363f50570a2a243</citedby><cites>FETCH-LOGICAL-c447t-ba1746998706be3a5def05c2b86ad246698836e6ee08d1b5ad363f50570a2a243</cites><orcidid>0000-0002-6919-0231 ; 0000-0002-4215-6500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31101621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xiaosheng</creatorcontrib><creatorcontrib>Stenson, Mary</creatorcontrib><creatorcontrib>Abeykoon, Jithma</creatorcontrib><creatorcontrib>Nowakowski, Kevin</creatorcontrib><creatorcontrib>Zhang, Lianwen</creatorcontrib><creatorcontrib>Lawson, Joshua</creatorcontrib><creatorcontrib>Wellik, Linda</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Krull, Jordan</creatorcontrib><creatorcontrib>Wenzl, Kerstin</creatorcontrib><creatorcontrib>Novak, Anne J.</creatorcontrib><creatorcontrib>Ansell, Stephen M.</creatorcontrib><creatorcontrib>Bishop, Gail A.</creatorcontrib><creatorcontrib>Billadeau, Daniel D.</creatorcontrib><creatorcontrib>Peng, Kah Whye</creatorcontrib><creatorcontrib>Giles, Francis</creatorcontrib><creatorcontrib>Schmitt, Daniel M.</creatorcontrib><creatorcontrib>Witzig, Thomas E.</creatorcontrib><title>Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma</title><title>Blood</title><addtitle>Blood</addtitle><description>Targeting the B-cell receptor and phosphatidylinositol 3-kinase/mTOR signaling pathways has shown meaningful, but incomplete, antitumor activity in lymphoma. Glycogen synthase kinase 3 (GSK3) α and β are 2 homologous and functionally overlapping serine/threonine kinases that phosphorylate multiple protein substrates in several key signaling pathways. To date, no agent targeting GSK3 has been approved for lymphoma therapy. We show that lymphoma cells abundantly express GSK3α and GSK3β compared with normal B and T lymphocytes at the messenger RNA and protein levels. Utilizing a new GSK3 inhibitor 9-ING-41 and by genetic deletion of GSK3α and GSK3β genes using CRISPR/CAS9 knockout, GSK3 was demonstrated to be functionally important to lymphoma cell growth and proliferation. GSK3β binds to centrosomes and microtubules, and lymphoma cells treated with 9-ING-41 become arrested in mitotic prophase, supporting the notion that GSK3β is necessary for the progression of mitosis. By analyzing recently published RNA sequencing data on 234 diffuse large B-cell lymphoma patients, we found that higher expression of GSK3α or GSK3β correlates well with shorter overall survival. These data provide rationale for testing GSK3 inhibitors in lymphoma patient trials. •GSK3 is overexpressed in, and functionally exploited by, lymphoma cells.•New GSK3 inhibitor 9-ING-41 induces apoptosis and cell cycle arrest at prophase by targeting centrosomes and microtubule-bound GSK3β. [Display omitted]</description><subject>Animals</subject><subject>Biomarkers, Tumor</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - genetics</subject><subject>Cell Survival - genetics</subject><subject>Disease Models, Animal</subject><subject>Gene Expression</subject><subject>Gene Targeting - methods</subject><subject>Glycogen Synthase Kinase 3 - antagonists &amp; inhibitors</subject><subject>Glycogen Synthase Kinase 3 - genetics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta - genetics</subject><subject>Glycogen Synthase Kinase 3 beta - metabolism</subject><subject>Humans</subject><subject>Indoles - pharmacology</subject><subject>Lymphoid Neoplasia</subject><subject>Lymphoma - diagnosis</subject><subject>Lymphoma - etiology</subject><subject>Lymphoma - mortality</subject><subject>Lymphoma - therapy</subject><subject>Maleimides - pharmacology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitosis - drug effects</subject><subject>Mitosis - genetics</subject><subject>Molecular Targeted Therapy - adverse effects</subject><subject>Molecular Targeted Therapy - methods</subject><subject>Spindle Apparatus - drug effects</subject><subject>Treatment Outcome</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EoqWwM6H8gZSzEzsOAxKqgCJVYimz5TiXxJDYlZNW6r-npXwOTO9w9z6newi5pDClVLLrovW-nDKgUmYpF3BExpQzGQMwOCZjABBxmmd0RM76_hWApgnjp2SUUApUMDom86UONQ7W1VHdbo2v0UX91g2N7jF6s24fSVT5EA0NBr3C9WBNVKDDyg6RdVG77VaN7_Q5Oal02-PFZ07Iy8P9cjaPF8-PT7O7RWzSNBviQtMsFXkuMxAFJpqXWAE3rJBClywVIpcyESgQQZa04LpMRFJx4BloplmaTMjtgbtaFx2WBt0QdKtWwXY6bJXXVv2dONuo2m-UEDxnXOwAcACY4Ps-YPXdpaD2VtWHVfVjdVe5-n3zu_Clcbdwc1jA3ecbi0H1xqIzWNqAZlClt__T3wH9zojz</recordid><startdate>20190725</startdate><enddate>20190725</enddate><creator>Wu, Xiaosheng</creator><creator>Stenson, Mary</creator><creator>Abeykoon, Jithma</creator><creator>Nowakowski, Kevin</creator><creator>Zhang, Lianwen</creator><creator>Lawson, Joshua</creator><creator>Wellik, Linda</creator><creator>Li, Ying</creator><creator>Krull, Jordan</creator><creator>Wenzl, Kerstin</creator><creator>Novak, Anne J.</creator><creator>Ansell, Stephen M.</creator><creator>Bishop, Gail A.</creator><creator>Billadeau, Daniel D.</creator><creator>Peng, Kah Whye</creator><creator>Giles, Francis</creator><creator>Schmitt, Daniel M.</creator><creator>Witzig, Thomas E.</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6919-0231</orcidid><orcidid>https://orcid.org/0000-0002-4215-6500</orcidid></search><sort><creationdate>20190725</creationdate><title>Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma</title><author>Wu, Xiaosheng ; Stenson, Mary ; Abeykoon, Jithma ; Nowakowski, Kevin ; Zhang, Lianwen ; Lawson, Joshua ; Wellik, Linda ; Li, Ying ; Krull, Jordan ; Wenzl, Kerstin ; Novak, Anne J. ; Ansell, Stephen M. ; Bishop, Gail A. ; Billadeau, Daniel D. ; Peng, Kah Whye ; Giles, Francis ; Schmitt, Daniel M. ; Witzig, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-ba1746998706be3a5def05c2b86ad246698836e6ee08d1b5ad363f50570a2a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biomarkers, Tumor</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - genetics</topic><topic>Cell Survival - genetics</topic><topic>Disease Models, Animal</topic><topic>Gene Expression</topic><topic>Gene Targeting - methods</topic><topic>Glycogen Synthase Kinase 3 - antagonists &amp; inhibitors</topic><topic>Glycogen Synthase Kinase 3 - genetics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta - genetics</topic><topic>Glycogen Synthase Kinase 3 beta - metabolism</topic><topic>Humans</topic><topic>Indoles - pharmacology</topic><topic>Lymphoid Neoplasia</topic><topic>Lymphoma - diagnosis</topic><topic>Lymphoma - etiology</topic><topic>Lymphoma - mortality</topic><topic>Lymphoma - therapy</topic><topic>Maleimides - pharmacology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitosis - drug effects</topic><topic>Mitosis - genetics</topic><topic>Molecular Targeted Therapy - adverse effects</topic><topic>Molecular Targeted Therapy - methods</topic><topic>Spindle Apparatus - drug effects</topic><topic>Treatment Outcome</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaosheng</creatorcontrib><creatorcontrib>Stenson, Mary</creatorcontrib><creatorcontrib>Abeykoon, Jithma</creatorcontrib><creatorcontrib>Nowakowski, Kevin</creatorcontrib><creatorcontrib>Zhang, Lianwen</creatorcontrib><creatorcontrib>Lawson, Joshua</creatorcontrib><creatorcontrib>Wellik, Linda</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Krull, Jordan</creatorcontrib><creatorcontrib>Wenzl, Kerstin</creatorcontrib><creatorcontrib>Novak, Anne J.</creatorcontrib><creatorcontrib>Ansell, Stephen M.</creatorcontrib><creatorcontrib>Bishop, Gail A.</creatorcontrib><creatorcontrib>Billadeau, Daniel D.</creatorcontrib><creatorcontrib>Peng, Kah Whye</creatorcontrib><creatorcontrib>Giles, Francis</creatorcontrib><creatorcontrib>Schmitt, Daniel M.</creatorcontrib><creatorcontrib>Witzig, Thomas E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaosheng</au><au>Stenson, Mary</au><au>Abeykoon, Jithma</au><au>Nowakowski, Kevin</au><au>Zhang, Lianwen</au><au>Lawson, Joshua</au><au>Wellik, Linda</au><au>Li, Ying</au><au>Krull, Jordan</au><au>Wenzl, Kerstin</au><au>Novak, Anne J.</au><au>Ansell, Stephen M.</au><au>Bishop, Gail A.</au><au>Billadeau, Daniel D.</au><au>Peng, Kah Whye</au><au>Giles, Francis</au><au>Schmitt, Daniel M.</au><au>Witzig, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2019-07-25</date><risdate>2019</risdate><volume>134</volume><issue>4</issue><spage>363</spage><epage>373</epage><pages>363-373</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Targeting the B-cell receptor and phosphatidylinositol 3-kinase/mTOR signaling pathways has shown meaningful, but incomplete, antitumor activity in lymphoma. Glycogen synthase kinase 3 (GSK3) α and β are 2 homologous and functionally overlapping serine/threonine kinases that phosphorylate multiple protein substrates in several key signaling pathways. To date, no agent targeting GSK3 has been approved for lymphoma therapy. We show that lymphoma cells abundantly express GSK3α and GSK3β compared with normal B and T lymphocytes at the messenger RNA and protein levels. Utilizing a new GSK3 inhibitor 9-ING-41 and by genetic deletion of GSK3α and GSK3β genes using CRISPR/CAS9 knockout, GSK3 was demonstrated to be functionally important to lymphoma cell growth and proliferation. GSK3β binds to centrosomes and microtubules, and lymphoma cells treated with 9-ING-41 become arrested in mitotic prophase, supporting the notion that GSK3β is necessary for the progression of mitosis. By analyzing recently published RNA sequencing data on 234 diffuse large B-cell lymphoma patients, we found that higher expression of GSK3α or GSK3β correlates well with shorter overall survival. These data provide rationale for testing GSK3 inhibitors in lymphoma patient trials. •GSK3 is overexpressed in, and functionally exploited by, lymphoma cells.•New GSK3 inhibitor 9-ING-41 induces apoptosis and cell cycle arrest at prophase by targeting centrosomes and microtubule-bound GSK3β. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31101621</pmid><doi>10.1182/blood.2018874560</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6919-0231</orcidid><orcidid>https://orcid.org/0000-0002-4215-6500</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2019-07, Vol.134 (4), p.363-373
issn 0006-4971
1528-0020
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6659256
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Biomarkers, Tumor
Cell Cycle Checkpoints - drug effects
Cell Cycle Checkpoints - genetics
Cell Line, Tumor
Cell Proliferation - genetics
Cell Survival - genetics
Disease Models, Animal
Gene Expression
Gene Targeting - methods
Glycogen Synthase Kinase 3 - antagonists & inhibitors
Glycogen Synthase Kinase 3 - genetics
Glycogen Synthase Kinase 3 - metabolism
Glycogen Synthase Kinase 3 beta - genetics
Glycogen Synthase Kinase 3 beta - metabolism
Humans
Indoles - pharmacology
Lymphoid Neoplasia
Lymphoma - diagnosis
Lymphoma - etiology
Lymphoma - mortality
Lymphoma - therapy
Maleimides - pharmacology
Mice
Mice, Transgenic
Mitosis - drug effects
Mitosis - genetics
Molecular Targeted Therapy - adverse effects
Molecular Targeted Therapy - methods
Spindle Apparatus - drug effects
Treatment Outcome
Xenograft Model Antitumor Assays
title Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20glycogen%20synthase%20kinase%203%20for%20therapeutic%20benefit%20in%20lymphoma&rft.jtitle=Blood&rft.au=Wu,%20Xiaosheng&rft.date=2019-07-25&rft.volume=134&rft.issue=4&rft.spage=363&rft.epage=373&rft.pages=363-373&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood.2018874560&rft_dat=%3Celsevier_pubme%3ES0006497120423845%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31101621&rft_els_id=S0006497120423845&rfr_iscdi=true