Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma
Targeting the B-cell receptor and phosphatidylinositol 3-kinase/mTOR signaling pathways has shown meaningful, but incomplete, antitumor activity in lymphoma. Glycogen synthase kinase 3 (GSK3) α and β are 2 homologous and functionally overlapping serine/threonine kinases that phosphorylate multiple p...
Gespeichert in:
Veröffentlicht in: | Blood 2019-07, Vol.134 (4), p.363-373 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 373 |
---|---|
container_issue | 4 |
container_start_page | 363 |
container_title | Blood |
container_volume | 134 |
creator | Wu, Xiaosheng Stenson, Mary Abeykoon, Jithma Nowakowski, Kevin Zhang, Lianwen Lawson, Joshua Wellik, Linda Li, Ying Krull, Jordan Wenzl, Kerstin Novak, Anne J. Ansell, Stephen M. Bishop, Gail A. Billadeau, Daniel D. Peng, Kah Whye Giles, Francis Schmitt, Daniel M. Witzig, Thomas E. |
description | Targeting the B-cell receptor and phosphatidylinositol 3-kinase/mTOR signaling pathways has shown meaningful, but incomplete, antitumor activity in lymphoma. Glycogen synthase kinase 3 (GSK3) α and β are 2 homologous and functionally overlapping serine/threonine kinases that phosphorylate multiple protein substrates in several key signaling pathways. To date, no agent targeting GSK3 has been approved for lymphoma therapy. We show that lymphoma cells abundantly express GSK3α and GSK3β compared with normal B and T lymphocytes at the messenger RNA and protein levels. Utilizing a new GSK3 inhibitor 9-ING-41 and by genetic deletion of GSK3α and GSK3β genes using CRISPR/CAS9 knockout, GSK3 was demonstrated to be functionally important to lymphoma cell growth and proliferation. GSK3β binds to centrosomes and microtubules, and lymphoma cells treated with 9-ING-41 become arrested in mitotic prophase, supporting the notion that GSK3β is necessary for the progression of mitosis. By analyzing recently published RNA sequencing data on 234 diffuse large B-cell lymphoma patients, we found that higher expression of GSK3α or GSK3β correlates well with shorter overall survival. These data provide rationale for testing GSK3 inhibitors in lymphoma patient trials.
•GSK3 is overexpressed in, and functionally exploited by, lymphoma cells.•New GSK3 inhibitor 9-ING-41 induces apoptosis and cell cycle arrest at prophase by targeting centrosomes and microtubule-bound GSK3β.
[Display omitted] |
doi_str_mv | 10.1182/blood.2018874560 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6659256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120423845</els_id><sourcerecordid>S0006497120423845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-ba1746998706be3a5def05c2b86ad246698836e6ee08d1b5ad363f50570a2a243</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwM6H8gZSzEzsOAxKqgCJVYimz5TiXxJDYlZNW6r-npXwOTO9w9z6newi5pDClVLLrovW-nDKgUmYpF3BExpQzGQMwOCZjABBxmmd0RM76_hWApgnjp2SUUApUMDom86UONQ7W1VHdbo2v0UX91g2N7jF6s24fSVT5EA0NBr3C9WBNVKDDyg6RdVG77VaN7_Q5Oal02-PFZ07Iy8P9cjaPF8-PT7O7RWzSNBviQtMsFXkuMxAFJpqXWAE3rJBClywVIpcyESgQQZa04LpMRFJx4BloplmaTMjtgbtaFx2WBt0QdKtWwXY6bJXXVv2dONuo2m-UEDxnXOwAcACY4Ps-YPXdpaD2VtWHVfVjdVe5-n3zu_Clcbdwc1jA3ecbi0H1xqIzWNqAZlClt__T3wH9zojz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Wu, Xiaosheng ; Stenson, Mary ; Abeykoon, Jithma ; Nowakowski, Kevin ; Zhang, Lianwen ; Lawson, Joshua ; Wellik, Linda ; Li, Ying ; Krull, Jordan ; Wenzl, Kerstin ; Novak, Anne J. ; Ansell, Stephen M. ; Bishop, Gail A. ; Billadeau, Daniel D. ; Peng, Kah Whye ; Giles, Francis ; Schmitt, Daniel M. ; Witzig, Thomas E.</creator><creatorcontrib>Wu, Xiaosheng ; Stenson, Mary ; Abeykoon, Jithma ; Nowakowski, Kevin ; Zhang, Lianwen ; Lawson, Joshua ; Wellik, Linda ; Li, Ying ; Krull, Jordan ; Wenzl, Kerstin ; Novak, Anne J. ; Ansell, Stephen M. ; Bishop, Gail A. ; Billadeau, Daniel D. ; Peng, Kah Whye ; Giles, Francis ; Schmitt, Daniel M. ; Witzig, Thomas E.</creatorcontrib><description>Targeting the B-cell receptor and phosphatidylinositol 3-kinase/mTOR signaling pathways has shown meaningful, but incomplete, antitumor activity in lymphoma. Glycogen synthase kinase 3 (GSK3) α and β are 2 homologous and functionally overlapping serine/threonine kinases that phosphorylate multiple protein substrates in several key signaling pathways. To date, no agent targeting GSK3 has been approved for lymphoma therapy. We show that lymphoma cells abundantly express GSK3α and GSK3β compared with normal B and T lymphocytes at the messenger RNA and protein levels. Utilizing a new GSK3 inhibitor 9-ING-41 and by genetic deletion of GSK3α and GSK3β genes using CRISPR/CAS9 knockout, GSK3 was demonstrated to be functionally important to lymphoma cell growth and proliferation. GSK3β binds to centrosomes and microtubules, and lymphoma cells treated with 9-ING-41 become arrested in mitotic prophase, supporting the notion that GSK3β is necessary for the progression of mitosis. By analyzing recently published RNA sequencing data on 234 diffuse large B-cell lymphoma patients, we found that higher expression of GSK3α or GSK3β correlates well with shorter overall survival. These data provide rationale for testing GSK3 inhibitors in lymphoma patient trials.
•GSK3 is overexpressed in, and functionally exploited by, lymphoma cells.•New GSK3 inhibitor 9-ING-41 induces apoptosis and cell cycle arrest at prophase by targeting centrosomes and microtubule-bound GSK3β.
[Display omitted]</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood.2018874560</identifier><identifier>PMID: 31101621</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biomarkers, Tumor ; Cell Cycle Checkpoints - drug effects ; Cell Cycle Checkpoints - genetics ; Cell Line, Tumor ; Cell Proliferation - genetics ; Cell Survival - genetics ; Disease Models, Animal ; Gene Expression ; Gene Targeting - methods ; Glycogen Synthase Kinase 3 - antagonists & inhibitors ; Glycogen Synthase Kinase 3 - genetics ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta - genetics ; Glycogen Synthase Kinase 3 beta - metabolism ; Humans ; Indoles - pharmacology ; Lymphoid Neoplasia ; Lymphoma - diagnosis ; Lymphoma - etiology ; Lymphoma - mortality ; Lymphoma - therapy ; Maleimides - pharmacology ; Mice ; Mice, Transgenic ; Mitosis - drug effects ; Mitosis - genetics ; Molecular Targeted Therapy - adverse effects ; Molecular Targeted Therapy - methods ; Spindle Apparatus - drug effects ; Treatment Outcome ; Xenograft Model Antitumor Assays</subject><ispartof>Blood, 2019-07, Vol.134 (4), p.363-373</ispartof><rights>2019 American Society of Hematology</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-ba1746998706be3a5def05c2b86ad246698836e6ee08d1b5ad363f50570a2a243</citedby><cites>FETCH-LOGICAL-c447t-ba1746998706be3a5def05c2b86ad246698836e6ee08d1b5ad363f50570a2a243</cites><orcidid>0000-0002-6919-0231 ; 0000-0002-4215-6500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31101621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xiaosheng</creatorcontrib><creatorcontrib>Stenson, Mary</creatorcontrib><creatorcontrib>Abeykoon, Jithma</creatorcontrib><creatorcontrib>Nowakowski, Kevin</creatorcontrib><creatorcontrib>Zhang, Lianwen</creatorcontrib><creatorcontrib>Lawson, Joshua</creatorcontrib><creatorcontrib>Wellik, Linda</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Krull, Jordan</creatorcontrib><creatorcontrib>Wenzl, Kerstin</creatorcontrib><creatorcontrib>Novak, Anne J.</creatorcontrib><creatorcontrib>Ansell, Stephen M.</creatorcontrib><creatorcontrib>Bishop, Gail A.</creatorcontrib><creatorcontrib>Billadeau, Daniel D.</creatorcontrib><creatorcontrib>Peng, Kah Whye</creatorcontrib><creatorcontrib>Giles, Francis</creatorcontrib><creatorcontrib>Schmitt, Daniel M.</creatorcontrib><creatorcontrib>Witzig, Thomas E.</creatorcontrib><title>Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma</title><title>Blood</title><addtitle>Blood</addtitle><description>Targeting the B-cell receptor and phosphatidylinositol 3-kinase/mTOR signaling pathways has shown meaningful, but incomplete, antitumor activity in lymphoma. Glycogen synthase kinase 3 (GSK3) α and β are 2 homologous and functionally overlapping serine/threonine kinases that phosphorylate multiple protein substrates in several key signaling pathways. To date, no agent targeting GSK3 has been approved for lymphoma therapy. We show that lymphoma cells abundantly express GSK3α and GSK3β compared with normal B and T lymphocytes at the messenger RNA and protein levels. Utilizing a new GSK3 inhibitor 9-ING-41 and by genetic deletion of GSK3α and GSK3β genes using CRISPR/CAS9 knockout, GSK3 was demonstrated to be functionally important to lymphoma cell growth and proliferation. GSK3β binds to centrosomes and microtubules, and lymphoma cells treated with 9-ING-41 become arrested in mitotic prophase, supporting the notion that GSK3β is necessary for the progression of mitosis. By analyzing recently published RNA sequencing data on 234 diffuse large B-cell lymphoma patients, we found that higher expression of GSK3α or GSK3β correlates well with shorter overall survival. These data provide rationale for testing GSK3 inhibitors in lymphoma patient trials.
•GSK3 is overexpressed in, and functionally exploited by, lymphoma cells.•New GSK3 inhibitor 9-ING-41 induces apoptosis and cell cycle arrest at prophase by targeting centrosomes and microtubule-bound GSK3β.
[Display omitted]</description><subject>Animals</subject><subject>Biomarkers, Tumor</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - genetics</subject><subject>Cell Survival - genetics</subject><subject>Disease Models, Animal</subject><subject>Gene Expression</subject><subject>Gene Targeting - methods</subject><subject>Glycogen Synthase Kinase 3 - antagonists & inhibitors</subject><subject>Glycogen Synthase Kinase 3 - genetics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta - genetics</subject><subject>Glycogen Synthase Kinase 3 beta - metabolism</subject><subject>Humans</subject><subject>Indoles - pharmacology</subject><subject>Lymphoid Neoplasia</subject><subject>Lymphoma - diagnosis</subject><subject>Lymphoma - etiology</subject><subject>Lymphoma - mortality</subject><subject>Lymphoma - therapy</subject><subject>Maleimides - pharmacology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitosis - drug effects</subject><subject>Mitosis - genetics</subject><subject>Molecular Targeted Therapy - adverse effects</subject><subject>Molecular Targeted Therapy - methods</subject><subject>Spindle Apparatus - drug effects</subject><subject>Treatment Outcome</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EoqWwM6H8gZSzEzsOAxKqgCJVYimz5TiXxJDYlZNW6r-npXwOTO9w9z6newi5pDClVLLrovW-nDKgUmYpF3BExpQzGQMwOCZjABBxmmd0RM76_hWApgnjp2SUUApUMDom86UONQ7W1VHdbo2v0UX91g2N7jF6s24fSVT5EA0NBr3C9WBNVKDDyg6RdVG77VaN7_Q5Oal02-PFZ07Iy8P9cjaPF8-PT7O7RWzSNBviQtMsFXkuMxAFJpqXWAE3rJBClywVIpcyESgQQZa04LpMRFJx4BloplmaTMjtgbtaFx2WBt0QdKtWwXY6bJXXVv2dONuo2m-UEDxnXOwAcACY4Ps-YPXdpaD2VtWHVfVjdVe5-n3zu_Clcbdwc1jA3ecbi0H1xqIzWNqAZlClt__T3wH9zojz</recordid><startdate>20190725</startdate><enddate>20190725</enddate><creator>Wu, Xiaosheng</creator><creator>Stenson, Mary</creator><creator>Abeykoon, Jithma</creator><creator>Nowakowski, Kevin</creator><creator>Zhang, Lianwen</creator><creator>Lawson, Joshua</creator><creator>Wellik, Linda</creator><creator>Li, Ying</creator><creator>Krull, Jordan</creator><creator>Wenzl, Kerstin</creator><creator>Novak, Anne J.</creator><creator>Ansell, Stephen M.</creator><creator>Bishop, Gail A.</creator><creator>Billadeau, Daniel D.</creator><creator>Peng, Kah Whye</creator><creator>Giles, Francis</creator><creator>Schmitt, Daniel M.</creator><creator>Witzig, Thomas E.</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6919-0231</orcidid><orcidid>https://orcid.org/0000-0002-4215-6500</orcidid></search><sort><creationdate>20190725</creationdate><title>Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma</title><author>Wu, Xiaosheng ; Stenson, Mary ; Abeykoon, Jithma ; Nowakowski, Kevin ; Zhang, Lianwen ; Lawson, Joshua ; Wellik, Linda ; Li, Ying ; Krull, Jordan ; Wenzl, Kerstin ; Novak, Anne J. ; Ansell, Stephen M. ; Bishop, Gail A. ; Billadeau, Daniel D. ; Peng, Kah Whye ; Giles, Francis ; Schmitt, Daniel M. ; Witzig, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-ba1746998706be3a5def05c2b86ad246698836e6ee08d1b5ad363f50570a2a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biomarkers, Tumor</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - genetics</topic><topic>Cell Survival - genetics</topic><topic>Disease Models, Animal</topic><topic>Gene Expression</topic><topic>Gene Targeting - methods</topic><topic>Glycogen Synthase Kinase 3 - antagonists & inhibitors</topic><topic>Glycogen Synthase Kinase 3 - genetics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta - genetics</topic><topic>Glycogen Synthase Kinase 3 beta - metabolism</topic><topic>Humans</topic><topic>Indoles - pharmacology</topic><topic>Lymphoid Neoplasia</topic><topic>Lymphoma - diagnosis</topic><topic>Lymphoma - etiology</topic><topic>Lymphoma - mortality</topic><topic>Lymphoma - therapy</topic><topic>Maleimides - pharmacology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitosis - drug effects</topic><topic>Mitosis - genetics</topic><topic>Molecular Targeted Therapy - adverse effects</topic><topic>Molecular Targeted Therapy - methods</topic><topic>Spindle Apparatus - drug effects</topic><topic>Treatment Outcome</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaosheng</creatorcontrib><creatorcontrib>Stenson, Mary</creatorcontrib><creatorcontrib>Abeykoon, Jithma</creatorcontrib><creatorcontrib>Nowakowski, Kevin</creatorcontrib><creatorcontrib>Zhang, Lianwen</creatorcontrib><creatorcontrib>Lawson, Joshua</creatorcontrib><creatorcontrib>Wellik, Linda</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Krull, Jordan</creatorcontrib><creatorcontrib>Wenzl, Kerstin</creatorcontrib><creatorcontrib>Novak, Anne J.</creatorcontrib><creatorcontrib>Ansell, Stephen M.</creatorcontrib><creatorcontrib>Bishop, Gail A.</creatorcontrib><creatorcontrib>Billadeau, Daniel D.</creatorcontrib><creatorcontrib>Peng, Kah Whye</creatorcontrib><creatorcontrib>Giles, Francis</creatorcontrib><creatorcontrib>Schmitt, Daniel M.</creatorcontrib><creatorcontrib>Witzig, Thomas E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaosheng</au><au>Stenson, Mary</au><au>Abeykoon, Jithma</au><au>Nowakowski, Kevin</au><au>Zhang, Lianwen</au><au>Lawson, Joshua</au><au>Wellik, Linda</au><au>Li, Ying</au><au>Krull, Jordan</au><au>Wenzl, Kerstin</au><au>Novak, Anne J.</au><au>Ansell, Stephen M.</au><au>Bishop, Gail A.</au><au>Billadeau, Daniel D.</au><au>Peng, Kah Whye</au><au>Giles, Francis</au><au>Schmitt, Daniel M.</au><au>Witzig, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2019-07-25</date><risdate>2019</risdate><volume>134</volume><issue>4</issue><spage>363</spage><epage>373</epage><pages>363-373</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Targeting the B-cell receptor and phosphatidylinositol 3-kinase/mTOR signaling pathways has shown meaningful, but incomplete, antitumor activity in lymphoma. Glycogen synthase kinase 3 (GSK3) α and β are 2 homologous and functionally overlapping serine/threonine kinases that phosphorylate multiple protein substrates in several key signaling pathways. To date, no agent targeting GSK3 has been approved for lymphoma therapy. We show that lymphoma cells abundantly express GSK3α and GSK3β compared with normal B and T lymphocytes at the messenger RNA and protein levels. Utilizing a new GSK3 inhibitor 9-ING-41 and by genetic deletion of GSK3α and GSK3β genes using CRISPR/CAS9 knockout, GSK3 was demonstrated to be functionally important to lymphoma cell growth and proliferation. GSK3β binds to centrosomes and microtubules, and lymphoma cells treated with 9-ING-41 become arrested in mitotic prophase, supporting the notion that GSK3β is necessary for the progression of mitosis. By analyzing recently published RNA sequencing data on 234 diffuse large B-cell lymphoma patients, we found that higher expression of GSK3α or GSK3β correlates well with shorter overall survival. These data provide rationale for testing GSK3 inhibitors in lymphoma patient trials.
•GSK3 is overexpressed in, and functionally exploited by, lymphoma cells.•New GSK3 inhibitor 9-ING-41 induces apoptosis and cell cycle arrest at prophase by targeting centrosomes and microtubule-bound GSK3β.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31101621</pmid><doi>10.1182/blood.2018874560</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6919-0231</orcidid><orcidid>https://orcid.org/0000-0002-4215-6500</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 2019-07, Vol.134 (4), p.363-373 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6659256 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Biomarkers, Tumor Cell Cycle Checkpoints - drug effects Cell Cycle Checkpoints - genetics Cell Line, Tumor Cell Proliferation - genetics Cell Survival - genetics Disease Models, Animal Gene Expression Gene Targeting - methods Glycogen Synthase Kinase 3 - antagonists & inhibitors Glycogen Synthase Kinase 3 - genetics Glycogen Synthase Kinase 3 - metabolism Glycogen Synthase Kinase 3 beta - genetics Glycogen Synthase Kinase 3 beta - metabolism Humans Indoles - pharmacology Lymphoid Neoplasia Lymphoma - diagnosis Lymphoma - etiology Lymphoma - mortality Lymphoma - therapy Maleimides - pharmacology Mice Mice, Transgenic Mitosis - drug effects Mitosis - genetics Molecular Targeted Therapy - adverse effects Molecular Targeted Therapy - methods Spindle Apparatus - drug effects Treatment Outcome Xenograft Model Antitumor Assays |
title | Targeting glycogen synthase kinase 3 for therapeutic benefit in lymphoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20glycogen%20synthase%20kinase%203%20for%20therapeutic%20benefit%20in%20lymphoma&rft.jtitle=Blood&rft.au=Wu,%20Xiaosheng&rft.date=2019-07-25&rft.volume=134&rft.issue=4&rft.spage=363&rft.epage=373&rft.pages=363-373&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood.2018874560&rft_dat=%3Celsevier_pubme%3ES0006497120423845%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31101621&rft_els_id=S0006497120423845&rfr_iscdi=true |