Growth of single-crystalline Bi2Te3 hexagonal nanoplates with and without single nanopores during temperature-controlled solvothermal synthesis
Bismuth telluride (Bi 2 Te 3 ) is a promising thermoelectric material for applications near room temperature. To increase the thermoelectric performance of this material, its dimensions and thermal transport should be decreased. Two-dimensional nanoplates with nanopores are an ideal structure becaus...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-07, Vol.9 (1), p.1-7, Article 10790 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Scientific reports |
container_volume | 9 |
creator | Hosokawa, Yuichi Tomita, Koji Takashiri, Masayuki |
description | Bismuth telluride (Bi
2
Te
3
) is a promising thermoelectric material for applications near room temperature. To increase the thermoelectric performance of this material, its dimensions and thermal transport should be decreased. Two-dimensional nanoplates with nanopores are an ideal structure because thermal transport is disrupted by nanopores. We prepared Bi
2
Te
3
nanoplates with single nanopores by a solvothermal synthesis and investigated their structural and crystallographic properties. The nanoplates synthesized at a lower reaction temperature (190 °C) developed single nanopores (approximately 20 nm in diameter), whereas the nanoplates synthesized at a higher reaction temperature (200 °C) did not have nanopores. A crystal growth mechanism is proposed based on the experimental observations. |
doi_str_mv | 10.1038/s41598-019-47356-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6658664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2264157925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-16a72c787c268c986b5b1d5f19fa4f4982be024fdacca00069ff1a6056cdf28e3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EolXpC7CKxIZNIP5NvEGCCgpSJTZlbXmc6xlXjh1sp-08Ba-MZzLib4E3vrr-ztH1PQi9xN0b3NHhbWaYy6HtsGxZT7lo-RN0TjrGW0IJefpHfYYuc77r6uFEMiyfozOKKROE0HP04zrFh7Jrom2yC1sPrUn7XLT3LkDzwZFboM0OHvU2Bu2boEOcvS6QmwdXZTqMxyIu5aRfkZgqMS6ptpoC0wxJlyVV8xhKit7D2OTo72PZQZqqb96HWmaXX6BnVvsMl6f7An379PH26nN78_X6y9X7m9YwjkuLhe6J6YfeEDEYOYgN3-CRWyytZpbJgWygI8yO2hhdfy6ktViLjgszWjIAvUDvVt952UwwGqhzaa_m5Cad9ipqp_5-CW6ntvFeCcEHIVg1eH0ySPH7ArmoyWUD3usAccmKEMF70XN5QF_9g97FJdV1HqmaYy8JrxRZKZNizgnsr2Fwpw6RqzVyVSNXx8jVQURXUZ4Pu4b02_o_qp9LrLJL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264157925</pqid></control><display><type>article</type><title>Growth of single-crystalline Bi2Te3 hexagonal nanoplates with and without single nanopores during temperature-controlled solvothermal synthesis</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Hosokawa, Yuichi ; Tomita, Koji ; Takashiri, Masayuki</creator><creatorcontrib>Hosokawa, Yuichi ; Tomita, Koji ; Takashiri, Masayuki</creatorcontrib><description>Bismuth telluride (Bi
2
Te
3
) is a promising thermoelectric material for applications near room temperature. To increase the thermoelectric performance of this material, its dimensions and thermal transport should be decreased. Two-dimensional nanoplates with nanopores are an ideal structure because thermal transport is disrupted by nanopores. We prepared Bi
2
Te
3
nanoplates with single nanopores by a solvothermal synthesis and investigated their structural and crystallographic properties. The nanoplates synthesized at a lower reaction temperature (190 °C) developed single nanopores (approximately 20 nm in diameter), whereas the nanoplates synthesized at a higher reaction temperature (200 °C) did not have nanopores. A crystal growth mechanism is proposed based on the experimental observations.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-47356-5</identifier><identifier>PMID: 31346223</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/354 ; 639/925/357/354 ; Crystal growth ; Crystal structure ; Heat conductivity ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary) ; Temperature ; Temperature effects</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.1-7, Article 10790</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-16a72c787c268c986b5b1d5f19fa4f4982be024fdacca00069ff1a6056cdf28e3</citedby><cites>FETCH-LOGICAL-c451t-16a72c787c268c986b5b1d5f19fa4f4982be024fdacca00069ff1a6056cdf28e3</cites><orcidid>0000-0001-7041-6595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658664/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658664/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids></links><search><creatorcontrib>Hosokawa, Yuichi</creatorcontrib><creatorcontrib>Tomita, Koji</creatorcontrib><creatorcontrib>Takashiri, Masayuki</creatorcontrib><title>Growth of single-crystalline Bi2Te3 hexagonal nanoplates with and without single nanopores during temperature-controlled solvothermal synthesis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Bismuth telluride (Bi
2
Te
3
) is a promising thermoelectric material for applications near room temperature. To increase the thermoelectric performance of this material, its dimensions and thermal transport should be decreased. Two-dimensional nanoplates with nanopores are an ideal structure because thermal transport is disrupted by nanopores. We prepared Bi
2
Te
3
nanoplates with single nanopores by a solvothermal synthesis and investigated their structural and crystallographic properties. The nanoplates synthesized at a lower reaction temperature (190 °C) developed single nanopores (approximately 20 nm in diameter), whereas the nanoplates synthesized at a higher reaction temperature (200 °C) did not have nanopores. A crystal growth mechanism is proposed based on the experimental observations.</description><subject>639/301/357/354</subject><subject>639/925/357/354</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Heat conductivity</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1DAUhS0EolXpC7CKxIZNIP5NvEGCCgpSJTZlbXmc6xlXjh1sp-08Ba-MZzLib4E3vrr-ztH1PQi9xN0b3NHhbWaYy6HtsGxZT7lo-RN0TjrGW0IJefpHfYYuc77r6uFEMiyfozOKKROE0HP04zrFh7Jrom2yC1sPrUn7XLT3LkDzwZFboM0OHvU2Bu2boEOcvS6QmwdXZTqMxyIu5aRfkZgqMS6ptpoC0wxJlyVV8xhKit7D2OTo72PZQZqqb96HWmaXX6BnVvsMl6f7An379PH26nN78_X6y9X7m9YwjkuLhe6J6YfeEDEYOYgN3-CRWyytZpbJgWygI8yO2hhdfy6ktViLjgszWjIAvUDvVt952UwwGqhzaa_m5Cad9ipqp_5-CW6ntvFeCcEHIVg1eH0ySPH7ArmoyWUD3usAccmKEMF70XN5QF_9g97FJdV1HqmaYy8JrxRZKZNizgnsr2Fwpw6RqzVyVSNXx8jVQURXUZ4Pu4b02_o_qp9LrLJL</recordid><startdate>20190725</startdate><enddate>20190725</enddate><creator>Hosokawa, Yuichi</creator><creator>Tomita, Koji</creator><creator>Takashiri, Masayuki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7041-6595</orcidid></search><sort><creationdate>20190725</creationdate><title>Growth of single-crystalline Bi2Te3 hexagonal nanoplates with and without single nanopores during temperature-controlled solvothermal synthesis</title><author>Hosokawa, Yuichi ; Tomita, Koji ; Takashiri, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-16a72c787c268c986b5b1d5f19fa4f4982be024fdacca00069ff1a6056cdf28e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/357/354</topic><topic>639/925/357/354</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Heat conductivity</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosokawa, Yuichi</creatorcontrib><creatorcontrib>Tomita, Koji</creatorcontrib><creatorcontrib>Takashiri, Masayuki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosokawa, Yuichi</au><au>Tomita, Koji</au><au>Takashiri, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of single-crystalline Bi2Te3 hexagonal nanoplates with and without single nanopores during temperature-controlled solvothermal synthesis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2019-07-25</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>10790</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Bismuth telluride (Bi
2
Te
3
) is a promising thermoelectric material for applications near room temperature. To increase the thermoelectric performance of this material, its dimensions and thermal transport should be decreased. Two-dimensional nanoplates with nanopores are an ideal structure because thermal transport is disrupted by nanopores. We prepared Bi
2
Te
3
nanoplates with single nanopores by a solvothermal synthesis and investigated their structural and crystallographic properties. The nanoplates synthesized at a lower reaction temperature (190 °C) developed single nanopores (approximately 20 nm in diameter), whereas the nanoplates synthesized at a higher reaction temperature (200 °C) did not have nanopores. A crystal growth mechanism is proposed based on the experimental observations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31346223</pmid><doi>10.1038/s41598-019-47356-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7041-6595</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-07, Vol.9 (1), p.1-7, Article 10790 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6658664 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/301/357/354 639/925/357/354 Crystal growth Crystal structure Heat conductivity Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) Temperature Temperature effects |
title | Growth of single-crystalline Bi2Te3 hexagonal nanoplates with and without single nanopores during temperature-controlled solvothermal synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20single-crystalline%20Bi2Te3%20hexagonal%20nanoplates%20with%20and%20without%20single%20nanopores%20during%20temperature-controlled%20solvothermal%20synthesis&rft.jtitle=Scientific%20reports&rft.au=Hosokawa,%20Yuichi&rft.date=2019-07-25&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=10790&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-47356-5&rft_dat=%3Cproquest_pubme%3E2264157925%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264157925&rft_id=info:pmid/31346223&rfr_iscdi=true |