Structure-Guided Identification of Resistance Breaking Antimalarial N‑Myristoyltransferase Inhibitors

The attachment of myristate to the N-terminal glycine of certain proteins is largely a co-translational modification catalyzed by N-myristoyltransferase (NMT), and involved in protein membrane-localization. Pathogen NMT is a validated therapeutic target in numerous infectious diseases including mala...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell chemical biology 2019-07, Vol.26 (7), p.991-1000.e7
Hauptverfasser: Schlott, Anja C, Mayclin, Stephen, Reers, Alexandra R, Coburn-Flynn, Olivia, Bell, Andrew S, Green, Judith, Knuepfer, Ellen, Charter, David, Bonnert, Roger, Campo, Brice, Burrows, Jeremy, Lyons-Abbott, Sally, Staker, Bart L, Chung, Chun-Wa, Myler, Peter J, Fidock, David A, Tate, Edward W, Holder, Anthony A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1000.e7
container_issue 7
container_start_page 991
container_title Cell chemical biology
container_volume 26
creator Schlott, Anja C
Mayclin, Stephen
Reers, Alexandra R
Coburn-Flynn, Olivia
Bell, Andrew S
Green, Judith
Knuepfer, Ellen
Charter, David
Bonnert, Roger
Campo, Brice
Burrows, Jeremy
Lyons-Abbott, Sally
Staker, Bart L
Chung, Chun-Wa
Myler, Peter J
Fidock, David A
Tate, Edward W
Holder, Anthony A
description The attachment of myristate to the N-terminal glycine of certain proteins is largely a co-translational modification catalyzed by N-myristoyltransferase (NMT), and involved in protein membrane-localization. Pathogen NMT is a validated therapeutic target in numerous infectious diseases including malaria. In Plasmodium falciparum, NMT substrates are important in essential processes including parasite gliding motility and host cell invasion. Here, we generated parasites resistant to a particular NMT inhibitor series and show that resistance in an in vitro parasite growth assay is mediated by a single amino acid substitution in the NMT substrate-binding pocket. The basis of resistance was validated and analyzed with a structure-guided approach using crystallography, in combination with enzyme activity, stability, and surface plasmon resonance assays, allowing identification of another inhibitor series unaffected by this substitution. We suggest that resistance studies incorporated early in the drug development process help selection of drug combinations to impede rapid evolution of parasite resistance.
doi_str_mv 10.1016/j.chembiol.2019.03.015
format Article
fullrecord <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6658617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31080074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-a5ff53753a080db175d66ca0163e84e7886dcb619203dc43a844b47371232bf63</originalsourceid><addsrcrecordid>eNpVkctOAjEYhRujEYK8Apm4n7GdXmbYmCBRJEFNvKybTqcDxaElbTFh5yv4ij6JJQjRVZv0nNPz_x8AAwQzBBG7WmZyoVaVtm2WQzTMIM4goiegmxOK0iEh5enxTlkH9L1fQhiduEC4OAcdjGAJYUG6YP4S3EaGjVPpZKNrVSfTWpmgGy1F0NYktkmeldc-CCNVcuOUeNdmnoyiZiVa4bRok8fvz6-HrYsiu22DE8Y3ygmvkqlZ6EoH6_wFOGtE61X_9-yBt7vb1_F9OnuaTMejWSoJQSEVtGkoLigWsWBdoYLWjEmxq65KooqyZLWsGBrmENeSYFESUpEizpXjvGoY7oHrfe56U61ULeMsTrR87WJbt-VWaP7_xegFn9sPzhgtGSpiwOU-wPqguZc6KLmQ1hglA0c07pbSKGJ7kXTWe6ea4wcI8h0ivuQHRHyHiEPMI6JoHPytd7QdgOAf0qKTTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure-Guided Identification of Resistance Breaking Antimalarial N‑Myristoyltransferase Inhibitors</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Schlott, Anja C ; Mayclin, Stephen ; Reers, Alexandra R ; Coburn-Flynn, Olivia ; Bell, Andrew S ; Green, Judith ; Knuepfer, Ellen ; Charter, David ; Bonnert, Roger ; Campo, Brice ; Burrows, Jeremy ; Lyons-Abbott, Sally ; Staker, Bart L ; Chung, Chun-Wa ; Myler, Peter J ; Fidock, David A ; Tate, Edward W ; Holder, Anthony A</creator><creatorcontrib>Schlott, Anja C ; Mayclin, Stephen ; Reers, Alexandra R ; Coburn-Flynn, Olivia ; Bell, Andrew S ; Green, Judith ; Knuepfer, Ellen ; Charter, David ; Bonnert, Roger ; Campo, Brice ; Burrows, Jeremy ; Lyons-Abbott, Sally ; Staker, Bart L ; Chung, Chun-Wa ; Myler, Peter J ; Fidock, David A ; Tate, Edward W ; Holder, Anthony A ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The attachment of myristate to the N-terminal glycine of certain proteins is largely a co-translational modification catalyzed by N-myristoyltransferase (NMT), and involved in protein membrane-localization. Pathogen NMT is a validated therapeutic target in numerous infectious diseases including malaria. In Plasmodium falciparum, NMT substrates are important in essential processes including parasite gliding motility and host cell invasion. Here, we generated parasites resistant to a particular NMT inhibitor series and show that resistance in an in vitro parasite growth assay is mediated by a single amino acid substitution in the NMT substrate-binding pocket. The basis of resistance was validated and analyzed with a structure-guided approach using crystallography, in combination with enzyme activity, stability, and surface plasmon resonance assays, allowing identification of another inhibitor series unaffected by this substitution. We suggest that resistance studies incorporated early in the drug development process help selection of drug combinations to impede rapid evolution of parasite resistance.</description><identifier>ISSN: 2451-9456</identifier><identifier>EISSN: 2451-9448</identifier><identifier>EISSN: 2451-9456</identifier><identifier>DOI: 10.1016/j.chembiol.2019.03.015</identifier><identifier>PMID: 31080074</identifier><language>eng</language><publisher>United States: Cell Press - Elsevier</publisher><subject>Acyltransferases - antagonists &amp; inhibitors ; Acyltransferases - genetics ; Acyltransferases - metabolism ; Amino Acid Sequence ; antimalarial target ; Antimalarials - chemistry ; BASIC BIOLOGICAL SCIENCES ; crystal structure ; drug resistance development ; Enzyme Inhibitors - chemistry ; genetic manipulation ; Humans ; malaria ; Malaria, Falciparum - drug therapy ; myristoylation ; N-myristoyl ; Plasmodium ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - metabolism ; Polymorphism, Single Nucleotide - genetics ; post-translational modification ; protein lipidation ; Protein Processing, Post-Translational ; transferase</subject><ispartof>Cell chemical biology, 2019-07, Vol.26 (7), p.991-1000.e7</ispartof><rights>Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-a5ff53753a080db175d66ca0163e84e7886dcb619203dc43a844b47371232bf63</citedby><cites>FETCH-LOGICAL-c441t-a5ff53753a080db175d66ca0163e84e7886dcb619203dc43a844b47371232bf63</cites><orcidid>0000-0001-6825-9404 ; 0000-0001-6753-8938 ; 0000-0002-6425-5577 ; 0000-0001-9570-5086 ; 0000-0002-2976-7374 ; 0000-0002-8490-6058 ; 0000-0002-0581-9387 ; 0000-0002-1600-4554 ; 0000-0002-6090-1877 ; 0000-0003-2561-6648 ; 0000-0003-2213-5814 ; 0000-0002-7139-8699 ; 0000-0002-0056-0513 ; 0000-0001-8448-6068 ; 0000-0002-2480-3110 ; 0000000271398699 ; 0000000229767374 ; 0000000264255577 ; 0000000205819387 ; 0000000224803110 ; 0000000260901877 ; 0000000184486068 ; 0000000195705086 ; 0000000325616648 ; 0000000284906058 ; 0000000167538938 ; 0000000216004554 ; 0000000200560513 ; 0000000322135814 ; 0000000168259404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31080074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1544855$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlott, Anja C</creatorcontrib><creatorcontrib>Mayclin, Stephen</creatorcontrib><creatorcontrib>Reers, Alexandra R</creatorcontrib><creatorcontrib>Coburn-Flynn, Olivia</creatorcontrib><creatorcontrib>Bell, Andrew S</creatorcontrib><creatorcontrib>Green, Judith</creatorcontrib><creatorcontrib>Knuepfer, Ellen</creatorcontrib><creatorcontrib>Charter, David</creatorcontrib><creatorcontrib>Bonnert, Roger</creatorcontrib><creatorcontrib>Campo, Brice</creatorcontrib><creatorcontrib>Burrows, Jeremy</creatorcontrib><creatorcontrib>Lyons-Abbott, Sally</creatorcontrib><creatorcontrib>Staker, Bart L</creatorcontrib><creatorcontrib>Chung, Chun-Wa</creatorcontrib><creatorcontrib>Myler, Peter J</creatorcontrib><creatorcontrib>Fidock, David A</creatorcontrib><creatorcontrib>Tate, Edward W</creatorcontrib><creatorcontrib>Holder, Anthony A</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Structure-Guided Identification of Resistance Breaking Antimalarial N‑Myristoyltransferase Inhibitors</title><title>Cell chemical biology</title><addtitle>Cell Chem Biol</addtitle><description>The attachment of myristate to the N-terminal glycine of certain proteins is largely a co-translational modification catalyzed by N-myristoyltransferase (NMT), and involved in protein membrane-localization. Pathogen NMT is a validated therapeutic target in numerous infectious diseases including malaria. In Plasmodium falciparum, NMT substrates are important in essential processes including parasite gliding motility and host cell invasion. Here, we generated parasites resistant to a particular NMT inhibitor series and show that resistance in an in vitro parasite growth assay is mediated by a single amino acid substitution in the NMT substrate-binding pocket. The basis of resistance was validated and analyzed with a structure-guided approach using crystallography, in combination with enzyme activity, stability, and surface plasmon resonance assays, allowing identification of another inhibitor series unaffected by this substitution. We suggest that resistance studies incorporated early in the drug development process help selection of drug combinations to impede rapid evolution of parasite resistance.</description><subject>Acyltransferases - antagonists &amp; inhibitors</subject><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>antimalarial target</subject><subject>Antimalarials - chemistry</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>crystal structure</subject><subject>drug resistance development</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>genetic manipulation</subject><subject>Humans</subject><subject>malaria</subject><subject>Malaria, Falciparum - drug therapy</subject><subject>myristoylation</subject><subject>N-myristoyl</subject><subject>Plasmodium</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>post-translational modification</subject><subject>protein lipidation</subject><subject>Protein Processing, Post-Translational</subject><subject>transferase</subject><issn>2451-9456</issn><issn>2451-9448</issn><issn>2451-9456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctOAjEYhRujEYK8Apm4n7GdXmbYmCBRJEFNvKybTqcDxaElbTFh5yv4ij6JJQjRVZv0nNPz_x8AAwQzBBG7WmZyoVaVtm2WQzTMIM4goiegmxOK0iEh5enxTlkH9L1fQhiduEC4OAcdjGAJYUG6YP4S3EaGjVPpZKNrVSfTWpmgGy1F0NYktkmeldc-CCNVcuOUeNdmnoyiZiVa4bRok8fvz6-HrYsiu22DE8Y3ygmvkqlZ6EoH6_wFOGtE61X_9-yBt7vb1_F9OnuaTMejWSoJQSEVtGkoLigWsWBdoYLWjEmxq65KooqyZLWsGBrmENeSYFESUpEizpXjvGoY7oHrfe56U61ULeMsTrR87WJbt-VWaP7_xegFn9sPzhgtGSpiwOU-wPqguZc6KLmQ1hglA0c07pbSKGJ7kXTWe6ea4wcI8h0ivuQHRHyHiEPMI6JoHPytd7QdgOAf0qKTTA</recordid><startdate>20190718</startdate><enddate>20190718</enddate><creator>Schlott, Anja C</creator><creator>Mayclin, Stephen</creator><creator>Reers, Alexandra R</creator><creator>Coburn-Flynn, Olivia</creator><creator>Bell, Andrew S</creator><creator>Green, Judith</creator><creator>Knuepfer, Ellen</creator><creator>Charter, David</creator><creator>Bonnert, Roger</creator><creator>Campo, Brice</creator><creator>Burrows, Jeremy</creator><creator>Lyons-Abbott, Sally</creator><creator>Staker, Bart L</creator><creator>Chung, Chun-Wa</creator><creator>Myler, Peter J</creator><creator>Fidock, David A</creator><creator>Tate, Edward W</creator><creator>Holder, Anthony A</creator><general>Cell Press - Elsevier</general><general>Cell Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6825-9404</orcidid><orcidid>https://orcid.org/0000-0001-6753-8938</orcidid><orcidid>https://orcid.org/0000-0002-6425-5577</orcidid><orcidid>https://orcid.org/0000-0001-9570-5086</orcidid><orcidid>https://orcid.org/0000-0002-2976-7374</orcidid><orcidid>https://orcid.org/0000-0002-8490-6058</orcidid><orcidid>https://orcid.org/0000-0002-0581-9387</orcidid><orcidid>https://orcid.org/0000-0002-1600-4554</orcidid><orcidid>https://orcid.org/0000-0002-6090-1877</orcidid><orcidid>https://orcid.org/0000-0003-2561-6648</orcidid><orcidid>https://orcid.org/0000-0003-2213-5814</orcidid><orcidid>https://orcid.org/0000-0002-7139-8699</orcidid><orcidid>https://orcid.org/0000-0002-0056-0513</orcidid><orcidid>https://orcid.org/0000-0001-8448-6068</orcidid><orcidid>https://orcid.org/0000-0002-2480-3110</orcidid><orcidid>https://orcid.org/0000000271398699</orcidid><orcidid>https://orcid.org/0000000229767374</orcidid><orcidid>https://orcid.org/0000000264255577</orcidid><orcidid>https://orcid.org/0000000205819387</orcidid><orcidid>https://orcid.org/0000000224803110</orcidid><orcidid>https://orcid.org/0000000260901877</orcidid><orcidid>https://orcid.org/0000000184486068</orcidid><orcidid>https://orcid.org/0000000195705086</orcidid><orcidid>https://orcid.org/0000000325616648</orcidid><orcidid>https://orcid.org/0000000284906058</orcidid><orcidid>https://orcid.org/0000000167538938</orcidid><orcidid>https://orcid.org/0000000216004554</orcidid><orcidid>https://orcid.org/0000000200560513</orcidid><orcidid>https://orcid.org/0000000322135814</orcidid><orcidid>https://orcid.org/0000000168259404</orcidid></search><sort><creationdate>20190718</creationdate><title>Structure-Guided Identification of Resistance Breaking Antimalarial N‑Myristoyltransferase Inhibitors</title><author>Schlott, Anja C ; Mayclin, Stephen ; Reers, Alexandra R ; Coburn-Flynn, Olivia ; Bell, Andrew S ; Green, Judith ; Knuepfer, Ellen ; Charter, David ; Bonnert, Roger ; Campo, Brice ; Burrows, Jeremy ; Lyons-Abbott, Sally ; Staker, Bart L ; Chung, Chun-Wa ; Myler, Peter J ; Fidock, David A ; Tate, Edward W ; Holder, Anthony A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-a5ff53753a080db175d66ca0163e84e7886dcb619203dc43a844b47371232bf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acyltransferases - antagonists &amp; inhibitors</topic><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>antimalarial target</topic><topic>Antimalarials - chemistry</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>crystal structure</topic><topic>drug resistance development</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>genetic manipulation</topic><topic>Humans</topic><topic>malaria</topic><topic>Malaria, Falciparum - drug therapy</topic><topic>myristoylation</topic><topic>N-myristoyl</topic><topic>Plasmodium</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>post-translational modification</topic><topic>protein lipidation</topic><topic>Protein Processing, Post-Translational</topic><topic>transferase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlott, Anja C</creatorcontrib><creatorcontrib>Mayclin, Stephen</creatorcontrib><creatorcontrib>Reers, Alexandra R</creatorcontrib><creatorcontrib>Coburn-Flynn, Olivia</creatorcontrib><creatorcontrib>Bell, Andrew S</creatorcontrib><creatorcontrib>Green, Judith</creatorcontrib><creatorcontrib>Knuepfer, Ellen</creatorcontrib><creatorcontrib>Charter, David</creatorcontrib><creatorcontrib>Bonnert, Roger</creatorcontrib><creatorcontrib>Campo, Brice</creatorcontrib><creatorcontrib>Burrows, Jeremy</creatorcontrib><creatorcontrib>Lyons-Abbott, Sally</creatorcontrib><creatorcontrib>Staker, Bart L</creatorcontrib><creatorcontrib>Chung, Chun-Wa</creatorcontrib><creatorcontrib>Myler, Peter J</creatorcontrib><creatorcontrib>Fidock, David A</creatorcontrib><creatorcontrib>Tate, Edward W</creatorcontrib><creatorcontrib>Holder, Anthony A</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlott, Anja C</au><au>Mayclin, Stephen</au><au>Reers, Alexandra R</au><au>Coburn-Flynn, Olivia</au><au>Bell, Andrew S</au><au>Green, Judith</au><au>Knuepfer, Ellen</au><au>Charter, David</au><au>Bonnert, Roger</au><au>Campo, Brice</au><au>Burrows, Jeremy</au><au>Lyons-Abbott, Sally</au><au>Staker, Bart L</au><au>Chung, Chun-Wa</au><au>Myler, Peter J</au><au>Fidock, David A</au><au>Tate, Edward W</au><au>Holder, Anthony A</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-Guided Identification of Resistance Breaking Antimalarial N‑Myristoyltransferase Inhibitors</atitle><jtitle>Cell chemical biology</jtitle><addtitle>Cell Chem Biol</addtitle><date>2019-07-18</date><risdate>2019</risdate><volume>26</volume><issue>7</issue><spage>991</spage><epage>1000.e7</epage><pages>991-1000.e7</pages><issn>2451-9456</issn><eissn>2451-9448</eissn><eissn>2451-9456</eissn><abstract>The attachment of myristate to the N-terminal glycine of certain proteins is largely a co-translational modification catalyzed by N-myristoyltransferase (NMT), and involved in protein membrane-localization. Pathogen NMT is a validated therapeutic target in numerous infectious diseases including malaria. In Plasmodium falciparum, NMT substrates are important in essential processes including parasite gliding motility and host cell invasion. Here, we generated parasites resistant to a particular NMT inhibitor series and show that resistance in an in vitro parasite growth assay is mediated by a single amino acid substitution in the NMT substrate-binding pocket. The basis of resistance was validated and analyzed with a structure-guided approach using crystallography, in combination with enzyme activity, stability, and surface plasmon resonance assays, allowing identification of another inhibitor series unaffected by this substitution. We suggest that resistance studies incorporated early in the drug development process help selection of drug combinations to impede rapid evolution of parasite resistance.</abstract><cop>United States</cop><pub>Cell Press - Elsevier</pub><pmid>31080074</pmid><doi>10.1016/j.chembiol.2019.03.015</doi><orcidid>https://orcid.org/0000-0001-6825-9404</orcidid><orcidid>https://orcid.org/0000-0001-6753-8938</orcidid><orcidid>https://orcid.org/0000-0002-6425-5577</orcidid><orcidid>https://orcid.org/0000-0001-9570-5086</orcidid><orcidid>https://orcid.org/0000-0002-2976-7374</orcidid><orcidid>https://orcid.org/0000-0002-8490-6058</orcidid><orcidid>https://orcid.org/0000-0002-0581-9387</orcidid><orcidid>https://orcid.org/0000-0002-1600-4554</orcidid><orcidid>https://orcid.org/0000-0002-6090-1877</orcidid><orcidid>https://orcid.org/0000-0003-2561-6648</orcidid><orcidid>https://orcid.org/0000-0003-2213-5814</orcidid><orcidid>https://orcid.org/0000-0002-7139-8699</orcidid><orcidid>https://orcid.org/0000-0002-0056-0513</orcidid><orcidid>https://orcid.org/0000-0001-8448-6068</orcidid><orcidid>https://orcid.org/0000-0002-2480-3110</orcidid><orcidid>https://orcid.org/0000000271398699</orcidid><orcidid>https://orcid.org/0000000229767374</orcidid><orcidid>https://orcid.org/0000000264255577</orcidid><orcidid>https://orcid.org/0000000205819387</orcidid><orcidid>https://orcid.org/0000000224803110</orcidid><orcidid>https://orcid.org/0000000260901877</orcidid><orcidid>https://orcid.org/0000000184486068</orcidid><orcidid>https://orcid.org/0000000195705086</orcidid><orcidid>https://orcid.org/0000000325616648</orcidid><orcidid>https://orcid.org/0000000284906058</orcidid><orcidid>https://orcid.org/0000000167538938</orcidid><orcidid>https://orcid.org/0000000216004554</orcidid><orcidid>https://orcid.org/0000000200560513</orcidid><orcidid>https://orcid.org/0000000322135814</orcidid><orcidid>https://orcid.org/0000000168259404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2451-9456
ispartof Cell chemical biology, 2019-07, Vol.26 (7), p.991-1000.e7
issn 2451-9456
2451-9448
2451-9456
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6658617
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acyltransferases - antagonists & inhibitors
Acyltransferases - genetics
Acyltransferases - metabolism
Amino Acid Sequence
antimalarial target
Antimalarials - chemistry
BASIC BIOLOGICAL SCIENCES
crystal structure
drug resistance development
Enzyme Inhibitors - chemistry
genetic manipulation
Humans
malaria
Malaria, Falciparum - drug therapy
myristoylation
N-myristoyl
Plasmodium
Plasmodium falciparum - drug effects
Plasmodium falciparum - metabolism
Polymorphism, Single Nucleotide - genetics
post-translational modification
protein lipidation
Protein Processing, Post-Translational
transferase
title Structure-Guided Identification of Resistance Breaking Antimalarial N‑Myristoyltransferase Inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-Guided%20Identification%20of%20Resistance%20Breaking%20Antimalarial%20N%E2%80%91Myristoyltransferase%20Inhibitors&rft.jtitle=Cell%20chemical%20biology&rft.au=Schlott,%20Anja%20C&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-07-18&rft.volume=26&rft.issue=7&rft.spage=991&rft.epage=1000.e7&rft.pages=991-1000.e7&rft.issn=2451-9456&rft.eissn=2451-9448&rft_id=info:doi/10.1016/j.chembiol.2019.03.015&rft_dat=%3Cpubmed_osti_%3E31080074%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31080074&rfr_iscdi=true