Which Antioxidant System Shapes Intracellular H2O2 Gradients?

Cellular antioxidant systems control the levels of hydrogen peroxide (H2O2) within cells. Multiple theoretical models exist that predict the diffusion properties of H2O2 depending on the rate of H2O2 generation and amount and reaction rates of antioxidant machinery components. Despite these theoreti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants & redox signaling 2019-09, Vol.31 (9), p.664-670
Hauptverfasser: Mishina, Natalie M, Bogdanova, Yulia A, Ermakova, Yulia G, Panova, Anastasiya S, Kotova, Daria A, Bilan, Dmitry S, Steinhorn, Benjamin, Arnér, Elias SJ, Thomas, Michel, Belousov, Vsevolod V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 670
container_issue 9
container_start_page 664
container_title Antioxidants & redox signaling
container_volume 31
creator Mishina, Natalie M
Bogdanova, Yulia A
Ermakova, Yulia G
Panova, Anastasiya S
Kotova, Daria A
Bilan, Dmitry S
Steinhorn, Benjamin
Arnér, Elias SJ
Thomas, Michel
Belousov, Vsevolod V
description Cellular antioxidant systems control the levels of hydrogen peroxide (H2O2) within cells. Multiple theoretical models exist that predict the diffusion properties of H2O2 depending on the rate of H2O2 generation and amount and reaction rates of antioxidant machinery components. Despite these theoretical predictions, it has remained unknown how antioxidant systems shape intracellular H2O2 gradients. The relative role of thioredoxin (Trx) and glutathione systems in H2O2 pattern formation and maintenance is another disputed question. Here, we visualized cellular antioxidant activity and H2O2 gradients formation by exploiting chemogenetic approaches to generate compartmentalized intracellular H2O2 and using the H2O2 biosensor HyPer to analyze the resulting H2O2 distribution in specific subcellular compartments. Using human HeLa cells as a model system, we propose that the Trx system, but not the glutathione system, regulates intracellular H2O2 gradients. Antioxid. Redox Signal. 31, 664–670.
doi_str_mv 10.1089/ars.2018.7697
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6657290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191012080</sourcerecordid><originalsourceid>FETCH-LOGICAL-p310t-6bfbebf325fd281983fc5e720fe76ab9199f817b541335058e79cbe7e0eed093</originalsourceid><addsrcrecordid>eNpdj81Lw0AUxBdRbK0evQe8eEl9u5v9OqiUom2h0EMLHpdN8mJS0iRmE7H_vQ160dM8ZoYfbwi5pTCloM2Da_2UAdVTJY06I2MqhAqVovJ8uBkPQctoRK683wMAoxQuyYgPpuZ0TB7f8iLJg1nVFfVXkbqqC7ZH3-Eh2OauQR-sqq51CZZlX7o2WLINCxatSwusOv98TS4yV3q8-dUJ2b2-7ObLcL1ZrOazddhwCl0o4yzGOONMZCnT1GieJQIVgwyVdLGhxmSaqlhElHMBQqMySYwKATEFwyfk6Qfb9PEB0wSHn0rbtMXBtUdbu8L-Taoit-_1p5VSKGbgBLj_BbT1R4--s4fCD6NchXXvLaOGAmWgh-rdv-q-7tvqtM4yJmUklImAfwOBhXAe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266457940</pqid></control><display><type>article</type><title>Which Antioxidant System Shapes Intracellular H2O2 Gradients?</title><source>Alma/SFX Local Collection</source><creator>Mishina, Natalie M ; Bogdanova, Yulia A ; Ermakova, Yulia G ; Panova, Anastasiya S ; Kotova, Daria A ; Bilan, Dmitry S ; Steinhorn, Benjamin ; Arnér, Elias SJ ; Thomas, Michel ; Belousov, Vsevolod V</creator><creatorcontrib>Mishina, Natalie M ; Bogdanova, Yulia A ; Ermakova, Yulia G ; Panova, Anastasiya S ; Kotova, Daria A ; Bilan, Dmitry S ; Steinhorn, Benjamin ; Arnér, Elias SJ ; Thomas, Michel ; Belousov, Vsevolod V</creatorcontrib><description>Cellular antioxidant systems control the levels of hydrogen peroxide (H2O2) within cells. Multiple theoretical models exist that predict the diffusion properties of H2O2 depending on the rate of H2O2 generation and amount and reaction rates of antioxidant machinery components. Despite these theoretical predictions, it has remained unknown how antioxidant systems shape intracellular H2O2 gradients. The relative role of thioredoxin (Trx) and glutathione systems in H2O2 pattern formation and maintenance is another disputed question. Here, we visualized cellular antioxidant activity and H2O2 gradients formation by exploiting chemogenetic approaches to generate compartmentalized intracellular H2O2 and using the H2O2 biosensor HyPer to analyze the resulting H2O2 distribution in specific subcellular compartments. Using human HeLa cells as a model system, we propose that the Trx system, but not the glutathione system, regulates intracellular H2O2 gradients. Antioxid. Redox Signal. 31, 664–670.</description><identifier>ISSN: 1523-0864</identifier><identifier>EISSN: 1557-7716</identifier><identifier>DOI: 10.1089/ars.2018.7697</identifier><identifier>PMID: 30864831</identifier><language>eng</language><publisher>New Rochelle: Mary Ann Liebert, Inc</publisher><subject>Antioxidants ; Biosensors ; Cell culture ; Diffusion rate ; Glutathione ; Hydrogen peroxide ; Intracellular ; Pattern formation ; Thioredoxin ; Views</subject><ispartof>Antioxidants &amp; redox signaling, 2019-09, Vol.31 (9), p.664-670</ispartof><rights>Copyright Mary Ann Liebert, Inc. Sep 20, 2019</rights><rights>Copyright 2019, Mary Ann Liebert, Inc., publishers 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Mishina, Natalie M</creatorcontrib><creatorcontrib>Bogdanova, Yulia A</creatorcontrib><creatorcontrib>Ermakova, Yulia G</creatorcontrib><creatorcontrib>Panova, Anastasiya S</creatorcontrib><creatorcontrib>Kotova, Daria A</creatorcontrib><creatorcontrib>Bilan, Dmitry S</creatorcontrib><creatorcontrib>Steinhorn, Benjamin</creatorcontrib><creatorcontrib>Arnér, Elias SJ</creatorcontrib><creatorcontrib>Thomas, Michel</creatorcontrib><creatorcontrib>Belousov, Vsevolod V</creatorcontrib><title>Which Antioxidant System Shapes Intracellular H2O2 Gradients?</title><title>Antioxidants &amp; redox signaling</title><description>Cellular antioxidant systems control the levels of hydrogen peroxide (H2O2) within cells. Multiple theoretical models exist that predict the diffusion properties of H2O2 depending on the rate of H2O2 generation and amount and reaction rates of antioxidant machinery components. Despite these theoretical predictions, it has remained unknown how antioxidant systems shape intracellular H2O2 gradients. The relative role of thioredoxin (Trx) and glutathione systems in H2O2 pattern formation and maintenance is another disputed question. Here, we visualized cellular antioxidant activity and H2O2 gradients formation by exploiting chemogenetic approaches to generate compartmentalized intracellular H2O2 and using the H2O2 biosensor HyPer to analyze the resulting H2O2 distribution in specific subcellular compartments. Using human HeLa cells as a model system, we propose that the Trx system, but not the glutathione system, regulates intracellular H2O2 gradients. Antioxid. Redox Signal. 31, 664–670.</description><subject>Antioxidants</subject><subject>Biosensors</subject><subject>Cell culture</subject><subject>Diffusion rate</subject><subject>Glutathione</subject><subject>Hydrogen peroxide</subject><subject>Intracellular</subject><subject>Pattern formation</subject><subject>Thioredoxin</subject><subject>Views</subject><issn>1523-0864</issn><issn>1557-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdj81Lw0AUxBdRbK0evQe8eEl9u5v9OqiUom2h0EMLHpdN8mJS0iRmE7H_vQ160dM8ZoYfbwi5pTCloM2Da_2UAdVTJY06I2MqhAqVovJ8uBkPQctoRK683wMAoxQuyYgPpuZ0TB7f8iLJg1nVFfVXkbqqC7ZH3-Eh2OauQR-sqq51CZZlX7o2WLINCxatSwusOv98TS4yV3q8-dUJ2b2-7ObLcL1ZrOazddhwCl0o4yzGOONMZCnT1GieJQIVgwyVdLGhxmSaqlhElHMBQqMySYwKATEFwyfk6Qfb9PEB0wSHn0rbtMXBtUdbu8L-Taoit-_1p5VSKGbgBLj_BbT1R4--s4fCD6NchXXvLaOGAmWgh-rdv-q-7tvqtM4yJmUklImAfwOBhXAe</recordid><startdate>20190920</startdate><enddate>20190920</enddate><creator>Mishina, Natalie M</creator><creator>Bogdanova, Yulia A</creator><creator>Ermakova, Yulia G</creator><creator>Panova, Anastasiya S</creator><creator>Kotova, Daria A</creator><creator>Bilan, Dmitry S</creator><creator>Steinhorn, Benjamin</creator><creator>Arnér, Elias SJ</creator><creator>Thomas, Michel</creator><creator>Belousov, Vsevolod V</creator><general>Mary Ann Liebert, Inc</general><general>Mary Ann Liebert, Inc., publishers</general><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190920</creationdate><title>Which Antioxidant System Shapes Intracellular H2O2 Gradients?</title><author>Mishina, Natalie M ; Bogdanova, Yulia A ; Ermakova, Yulia G ; Panova, Anastasiya S ; Kotova, Daria A ; Bilan, Dmitry S ; Steinhorn, Benjamin ; Arnér, Elias SJ ; Thomas, Michel ; Belousov, Vsevolod V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p310t-6bfbebf325fd281983fc5e720fe76ab9199f817b541335058e79cbe7e0eed093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antioxidants</topic><topic>Biosensors</topic><topic>Cell culture</topic><topic>Diffusion rate</topic><topic>Glutathione</topic><topic>Hydrogen peroxide</topic><topic>Intracellular</topic><topic>Pattern formation</topic><topic>Thioredoxin</topic><topic>Views</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishina, Natalie M</creatorcontrib><creatorcontrib>Bogdanova, Yulia A</creatorcontrib><creatorcontrib>Ermakova, Yulia G</creatorcontrib><creatorcontrib>Panova, Anastasiya S</creatorcontrib><creatorcontrib>Kotova, Daria A</creatorcontrib><creatorcontrib>Bilan, Dmitry S</creatorcontrib><creatorcontrib>Steinhorn, Benjamin</creatorcontrib><creatorcontrib>Arnér, Elias SJ</creatorcontrib><creatorcontrib>Thomas, Michel</creatorcontrib><creatorcontrib>Belousov, Vsevolod V</creatorcontrib><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Antioxidants &amp; redox signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishina, Natalie M</au><au>Bogdanova, Yulia A</au><au>Ermakova, Yulia G</au><au>Panova, Anastasiya S</au><au>Kotova, Daria A</au><au>Bilan, Dmitry S</au><au>Steinhorn, Benjamin</au><au>Arnér, Elias SJ</au><au>Thomas, Michel</au><au>Belousov, Vsevolod V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Which Antioxidant System Shapes Intracellular H2O2 Gradients?</atitle><jtitle>Antioxidants &amp; redox signaling</jtitle><date>2019-09-20</date><risdate>2019</risdate><volume>31</volume><issue>9</issue><spage>664</spage><epage>670</epage><pages>664-670</pages><issn>1523-0864</issn><eissn>1557-7716</eissn><abstract>Cellular antioxidant systems control the levels of hydrogen peroxide (H2O2) within cells. Multiple theoretical models exist that predict the diffusion properties of H2O2 depending on the rate of H2O2 generation and amount and reaction rates of antioxidant machinery components. Despite these theoretical predictions, it has remained unknown how antioxidant systems shape intracellular H2O2 gradients. The relative role of thioredoxin (Trx) and glutathione systems in H2O2 pattern formation and maintenance is another disputed question. Here, we visualized cellular antioxidant activity and H2O2 gradients formation by exploiting chemogenetic approaches to generate compartmentalized intracellular H2O2 and using the H2O2 biosensor HyPer to analyze the resulting H2O2 distribution in specific subcellular compartments. Using human HeLa cells as a model system, we propose that the Trx system, but not the glutathione system, regulates intracellular H2O2 gradients. Antioxid. Redox Signal. 31, 664–670.</abstract><cop>New Rochelle</cop><pub>Mary Ann Liebert, Inc</pub><pmid>30864831</pmid><doi>10.1089/ars.2018.7697</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1523-0864
ispartof Antioxidants & redox signaling, 2019-09, Vol.31 (9), p.664-670
issn 1523-0864
1557-7716
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6657290
source Alma/SFX Local Collection
subjects Antioxidants
Biosensors
Cell culture
Diffusion rate
Glutathione
Hydrogen peroxide
Intracellular
Pattern formation
Thioredoxin
Views
title Which Antioxidant System Shapes Intracellular H2O2 Gradients?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Which%20Antioxidant%20System%20Shapes%20Intracellular%20H2O2%20Gradients?&rft.jtitle=Antioxidants%20&%20redox%20signaling&rft.au=Mishina,%20Natalie%20M&rft.date=2019-09-20&rft.volume=31&rft.issue=9&rft.spage=664&rft.epage=670&rft.pages=664-670&rft.issn=1523-0864&rft.eissn=1557-7716&rft_id=info:doi/10.1089/ars.2018.7697&rft_dat=%3Cproquest_pubme%3E2191012080%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266457940&rft_id=info:pmid/30864831&rfr_iscdi=true