Which Antioxidant System Shapes Intracellular H2O2 Gradients?
Cellular antioxidant systems control the levels of hydrogen peroxide (H2O2) within cells. Multiple theoretical models exist that predict the diffusion properties of H2O2 depending on the rate of H2O2 generation and amount and reaction rates of antioxidant machinery components. Despite these theoreti...
Gespeichert in:
Veröffentlicht in: | Antioxidants & redox signaling 2019-09, Vol.31 (9), p.664-670 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 670 |
---|---|
container_issue | 9 |
container_start_page | 664 |
container_title | Antioxidants & redox signaling |
container_volume | 31 |
creator | Mishina, Natalie M Bogdanova, Yulia A Ermakova, Yulia G Panova, Anastasiya S Kotova, Daria A Bilan, Dmitry S Steinhorn, Benjamin Arnér, Elias SJ Thomas, Michel Belousov, Vsevolod V |
description | Cellular antioxidant systems control the levels of hydrogen peroxide (H2O2) within cells. Multiple theoretical models exist that predict the diffusion properties of H2O2 depending on the rate of H2O2 generation and amount and reaction rates of antioxidant machinery components. Despite these theoretical predictions, it has remained unknown how antioxidant systems shape intracellular H2O2 gradients. The relative role of thioredoxin (Trx) and glutathione systems in H2O2 pattern formation and maintenance is another disputed question. Here, we visualized cellular antioxidant activity and H2O2 gradients formation by exploiting chemogenetic approaches to generate compartmentalized intracellular H2O2 and using the H2O2 biosensor HyPer to analyze the resulting H2O2 distribution in specific subcellular compartments. Using human HeLa cells as a model system, we propose that the Trx system, but not the glutathione system, regulates intracellular H2O2 gradients. Antioxid. Redox Signal. 31, 664–670. |
doi_str_mv | 10.1089/ars.2018.7697 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6657290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191012080</sourcerecordid><originalsourceid>FETCH-LOGICAL-p310t-6bfbebf325fd281983fc5e720fe76ab9199f817b541335058e79cbe7e0eed093</originalsourceid><addsrcrecordid>eNpdj81Lw0AUxBdRbK0evQe8eEl9u5v9OqiUom2h0EMLHpdN8mJS0iRmE7H_vQ160dM8ZoYfbwi5pTCloM2Da_2UAdVTJY06I2MqhAqVovJ8uBkPQctoRK683wMAoxQuyYgPpuZ0TB7f8iLJg1nVFfVXkbqqC7ZH3-Eh2OauQR-sqq51CZZlX7o2WLINCxatSwusOv98TS4yV3q8-dUJ2b2-7ObLcL1ZrOazddhwCl0o4yzGOONMZCnT1GieJQIVgwyVdLGhxmSaqlhElHMBQqMySYwKATEFwyfk6Qfb9PEB0wSHn0rbtMXBtUdbu8L-Taoit-_1p5VSKGbgBLj_BbT1R4--s4fCD6NchXXvLaOGAmWgh-rdv-q-7tvqtM4yJmUklImAfwOBhXAe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266457940</pqid></control><display><type>article</type><title>Which Antioxidant System Shapes Intracellular H2O2 Gradients?</title><source>Alma/SFX Local Collection</source><creator>Mishina, Natalie M ; Bogdanova, Yulia A ; Ermakova, Yulia G ; Panova, Anastasiya S ; Kotova, Daria A ; Bilan, Dmitry S ; Steinhorn, Benjamin ; Arnér, Elias SJ ; Thomas, Michel ; Belousov, Vsevolod V</creator><creatorcontrib>Mishina, Natalie M ; Bogdanova, Yulia A ; Ermakova, Yulia G ; Panova, Anastasiya S ; Kotova, Daria A ; Bilan, Dmitry S ; Steinhorn, Benjamin ; Arnér, Elias SJ ; Thomas, Michel ; Belousov, Vsevolod V</creatorcontrib><description>Cellular antioxidant systems control the levels of hydrogen peroxide (H2O2) within cells. Multiple theoretical models exist that predict the diffusion properties of H2O2 depending on the rate of H2O2 generation and amount and reaction rates of antioxidant machinery components. Despite these theoretical predictions, it has remained unknown how antioxidant systems shape intracellular H2O2 gradients. The relative role of thioredoxin (Trx) and glutathione systems in H2O2 pattern formation and maintenance is another disputed question. Here, we visualized cellular antioxidant activity and H2O2 gradients formation by exploiting chemogenetic approaches to generate compartmentalized intracellular H2O2 and using the H2O2 biosensor HyPer to analyze the resulting H2O2 distribution in specific subcellular compartments. Using human HeLa cells as a model system, we propose that the Trx system, but not the glutathione system, regulates intracellular H2O2 gradients. Antioxid. Redox Signal. 31, 664–670.</description><identifier>ISSN: 1523-0864</identifier><identifier>EISSN: 1557-7716</identifier><identifier>DOI: 10.1089/ars.2018.7697</identifier><identifier>PMID: 30864831</identifier><language>eng</language><publisher>New Rochelle: Mary Ann Liebert, Inc</publisher><subject>Antioxidants ; Biosensors ; Cell culture ; Diffusion rate ; Glutathione ; Hydrogen peroxide ; Intracellular ; Pattern formation ; Thioredoxin ; Views</subject><ispartof>Antioxidants & redox signaling, 2019-09, Vol.31 (9), p.664-670</ispartof><rights>Copyright Mary Ann Liebert, Inc. Sep 20, 2019</rights><rights>Copyright 2019, Mary Ann Liebert, Inc., publishers 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Mishina, Natalie M</creatorcontrib><creatorcontrib>Bogdanova, Yulia A</creatorcontrib><creatorcontrib>Ermakova, Yulia G</creatorcontrib><creatorcontrib>Panova, Anastasiya S</creatorcontrib><creatorcontrib>Kotova, Daria A</creatorcontrib><creatorcontrib>Bilan, Dmitry S</creatorcontrib><creatorcontrib>Steinhorn, Benjamin</creatorcontrib><creatorcontrib>Arnér, Elias SJ</creatorcontrib><creatorcontrib>Thomas, Michel</creatorcontrib><creatorcontrib>Belousov, Vsevolod V</creatorcontrib><title>Which Antioxidant System Shapes Intracellular H2O2 Gradients?</title><title>Antioxidants & redox signaling</title><description>Cellular antioxidant systems control the levels of hydrogen peroxide (H2O2) within cells. Multiple theoretical models exist that predict the diffusion properties of H2O2 depending on the rate of H2O2 generation and amount and reaction rates of antioxidant machinery components. Despite these theoretical predictions, it has remained unknown how antioxidant systems shape intracellular H2O2 gradients. The relative role of thioredoxin (Trx) and glutathione systems in H2O2 pattern formation and maintenance is another disputed question. Here, we visualized cellular antioxidant activity and H2O2 gradients formation by exploiting chemogenetic approaches to generate compartmentalized intracellular H2O2 and using the H2O2 biosensor HyPer to analyze the resulting H2O2 distribution in specific subcellular compartments. Using human HeLa cells as a model system, we propose that the Trx system, but not the glutathione system, regulates intracellular H2O2 gradients. Antioxid. Redox Signal. 31, 664–670.</description><subject>Antioxidants</subject><subject>Biosensors</subject><subject>Cell culture</subject><subject>Diffusion rate</subject><subject>Glutathione</subject><subject>Hydrogen peroxide</subject><subject>Intracellular</subject><subject>Pattern formation</subject><subject>Thioredoxin</subject><subject>Views</subject><issn>1523-0864</issn><issn>1557-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdj81Lw0AUxBdRbK0evQe8eEl9u5v9OqiUom2h0EMLHpdN8mJS0iRmE7H_vQ160dM8ZoYfbwi5pTCloM2Da_2UAdVTJY06I2MqhAqVovJ8uBkPQctoRK683wMAoxQuyYgPpuZ0TB7f8iLJg1nVFfVXkbqqC7ZH3-Eh2OauQR-sqq51CZZlX7o2WLINCxatSwusOv98TS4yV3q8-dUJ2b2-7ObLcL1ZrOazddhwCl0o4yzGOONMZCnT1GieJQIVgwyVdLGhxmSaqlhElHMBQqMySYwKATEFwyfk6Qfb9PEB0wSHn0rbtMXBtUdbu8L-Taoit-_1p5VSKGbgBLj_BbT1R4--s4fCD6NchXXvLaOGAmWgh-rdv-q-7tvqtM4yJmUklImAfwOBhXAe</recordid><startdate>20190920</startdate><enddate>20190920</enddate><creator>Mishina, Natalie M</creator><creator>Bogdanova, Yulia A</creator><creator>Ermakova, Yulia G</creator><creator>Panova, Anastasiya S</creator><creator>Kotova, Daria A</creator><creator>Bilan, Dmitry S</creator><creator>Steinhorn, Benjamin</creator><creator>Arnér, Elias SJ</creator><creator>Thomas, Michel</creator><creator>Belousov, Vsevolod V</creator><general>Mary Ann Liebert, Inc</general><general>Mary Ann Liebert, Inc., publishers</general><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190920</creationdate><title>Which Antioxidant System Shapes Intracellular H2O2 Gradients?</title><author>Mishina, Natalie M ; Bogdanova, Yulia A ; Ermakova, Yulia G ; Panova, Anastasiya S ; Kotova, Daria A ; Bilan, Dmitry S ; Steinhorn, Benjamin ; Arnér, Elias SJ ; Thomas, Michel ; Belousov, Vsevolod V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p310t-6bfbebf325fd281983fc5e720fe76ab9199f817b541335058e79cbe7e0eed093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antioxidants</topic><topic>Biosensors</topic><topic>Cell culture</topic><topic>Diffusion rate</topic><topic>Glutathione</topic><topic>Hydrogen peroxide</topic><topic>Intracellular</topic><topic>Pattern formation</topic><topic>Thioredoxin</topic><topic>Views</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishina, Natalie M</creatorcontrib><creatorcontrib>Bogdanova, Yulia A</creatorcontrib><creatorcontrib>Ermakova, Yulia G</creatorcontrib><creatorcontrib>Panova, Anastasiya S</creatorcontrib><creatorcontrib>Kotova, Daria A</creatorcontrib><creatorcontrib>Bilan, Dmitry S</creatorcontrib><creatorcontrib>Steinhorn, Benjamin</creatorcontrib><creatorcontrib>Arnér, Elias SJ</creatorcontrib><creatorcontrib>Thomas, Michel</creatorcontrib><creatorcontrib>Belousov, Vsevolod V</creatorcontrib><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Antioxidants & redox signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishina, Natalie M</au><au>Bogdanova, Yulia A</au><au>Ermakova, Yulia G</au><au>Panova, Anastasiya S</au><au>Kotova, Daria A</au><au>Bilan, Dmitry S</au><au>Steinhorn, Benjamin</au><au>Arnér, Elias SJ</au><au>Thomas, Michel</au><au>Belousov, Vsevolod V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Which Antioxidant System Shapes Intracellular H2O2 Gradients?</atitle><jtitle>Antioxidants & redox signaling</jtitle><date>2019-09-20</date><risdate>2019</risdate><volume>31</volume><issue>9</issue><spage>664</spage><epage>670</epage><pages>664-670</pages><issn>1523-0864</issn><eissn>1557-7716</eissn><abstract>Cellular antioxidant systems control the levels of hydrogen peroxide (H2O2) within cells. Multiple theoretical models exist that predict the diffusion properties of H2O2 depending on the rate of H2O2 generation and amount and reaction rates of antioxidant machinery components. Despite these theoretical predictions, it has remained unknown how antioxidant systems shape intracellular H2O2 gradients. The relative role of thioredoxin (Trx) and glutathione systems in H2O2 pattern formation and maintenance is another disputed question. Here, we visualized cellular antioxidant activity and H2O2 gradients formation by exploiting chemogenetic approaches to generate compartmentalized intracellular H2O2 and using the H2O2 biosensor HyPer to analyze the resulting H2O2 distribution in specific subcellular compartments. Using human HeLa cells as a model system, we propose that the Trx system, but not the glutathione system, regulates intracellular H2O2 gradients. Antioxid. Redox Signal. 31, 664–670.</abstract><cop>New Rochelle</cop><pub>Mary Ann Liebert, Inc</pub><pmid>30864831</pmid><doi>10.1089/ars.2018.7697</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1523-0864 |
ispartof | Antioxidants & redox signaling, 2019-09, Vol.31 (9), p.664-670 |
issn | 1523-0864 1557-7716 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6657290 |
source | Alma/SFX Local Collection |
subjects | Antioxidants Biosensors Cell culture Diffusion rate Glutathione Hydrogen peroxide Intracellular Pattern formation Thioredoxin Views |
title | Which Antioxidant System Shapes Intracellular H2O2 Gradients? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Which%20Antioxidant%20System%20Shapes%20Intracellular%20H2O2%20Gradients?&rft.jtitle=Antioxidants%20&%20redox%20signaling&rft.au=Mishina,%20Natalie%20M&rft.date=2019-09-20&rft.volume=31&rft.issue=9&rft.spage=664&rft.epage=670&rft.pages=664-670&rft.issn=1523-0864&rft.eissn=1557-7716&rft_id=info:doi/10.1089/ars.2018.7697&rft_dat=%3Cproquest_pubme%3E2191012080%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266457940&rft_id=info:pmid/30864831&rfr_iscdi=true |