Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model

Magnetite (Fe 3 O 4 ) nanoparticles with uniform sizes of 10, 20, and 31 nm were prepared by thermal decomposition of Fe(III) oleate or mandelate in a high-boiling point solvent (>320 °C). To render the particles with hydrophilic and antifouling properties, their surface was coated with a PEG-con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-07, Vol.9 (1), p.10765-12, Article 10765
Hauptverfasser: Patsula, Vitalii, Horák, Daniel, Kučka, Jan, Macková, Hana, Lobaz, Volodymyr, Francová, Pavla, Herynek, Vít, Heizer, Tomáš, Páral, Petr, Šefc, Luděk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 10765
container_title Scientific reports
container_volume 9
creator Patsula, Vitalii
Horák, Daniel
Kučka, Jan
Macková, Hana
Lobaz, Volodymyr
Francová, Pavla
Herynek, Vít
Heizer, Tomáš
Páral, Petr
Šefc, Luděk
description Magnetite (Fe 3 O 4 ) nanoparticles with uniform sizes of 10, 20, and 31 nm were prepared by thermal decomposition of Fe(III) oleate or mandelate in a high-boiling point solvent (>320 °C). To render the particles with hydrophilic and antifouling properties, their surface was coated with a PEG-containing bisphosphonate anchoring group. The PEGylated particles were characterized by a range of physicochemical methods, including dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and magnetization measurements. As the particle size increased from 10 to 31 nm, the amount of PEG coating decreased from 28.5 to 9 wt.%. The PEG formed a dense brush-like shell on the particle surface, which prevented particles from aggregating in water and PBS (pH 7.4) and maximized the circulation time in vivo . Magnetic resonance relaxometry confirmed that the PEG-modified Fe 3 O 4 nanoparticles had high relaxivity, which increased with increasing particle size. In the in vivo experiments in a mouse model, the particles provided visible contrast enhancement in the magnetic resonance images. Almost 70% of administrated 20-nm magnetic nanoparticles still circulated in the blood stream after four hours; however, their retention in the tumor was rather low, which was likely due to the antifouling properties of PEG.
doi_str_mv 10.1038/s41598-019-47262-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6656745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2263285221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-2aba2e3bd4ec85fcfc0a465f48a3331e13c18cd2656ad9183504657ab124cd783</originalsourceid><addsrcrecordid>eNp9UV1rFTEUDGKxpfYP9EEWfI5uvvbuvghSahUKCrbPIZucvU3JJtcka-mP8j96brfW-mJecsjMmRkyhJyy9h1rRf--SKaGnrZsoHLDO07vXpAj3kpFueD85bP5kJyUctviUXyQbHhFDgUTkiF2RH59v4_1BoovjYmumZPzk7em-hSbNDVL9FPKc_Pt_IJGyN7lFE0FuvIAF8w2QvW2iSamnck4BiiNgwp59hHHXU4hxS1yx5CSa6zPdgmrw95y9KhVavbj8vDm8RlzLAVwFWzwEfOEfTIIr8nBZEKBk8f7mFx_Or86-0wvv158Oft4Sa1irFJuRsNBjE6C7dVkJ9sa2alJ9kYIwYAJy3rreKc64wbWC9UivDEj49K6TS-OyYdVd7eMMzgLsWYT9C772eR7nYzX_yLR3-ht-qk7lNxIhQJvHwVy-rFAqfo2LTliZs15J3ivOGfI4ivL5lRKhunJgbV637JeW9bYsn5oWd_h0pvn2Z5W_nSKBLESCkL48fmv939kfwMhCbmp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263285221</pqid></control><display><type>article</type><title>Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Patsula, Vitalii ; Horák, Daniel ; Kučka, Jan ; Macková, Hana ; Lobaz, Volodymyr ; Francová, Pavla ; Herynek, Vít ; Heizer, Tomáš ; Páral, Petr ; Šefc, Luděk</creator><creatorcontrib>Patsula, Vitalii ; Horák, Daniel ; Kučka, Jan ; Macková, Hana ; Lobaz, Volodymyr ; Francová, Pavla ; Herynek, Vít ; Heizer, Tomáš ; Páral, Petr ; Šefc, Luděk</creatorcontrib><description>Magnetite (Fe 3 O 4 ) nanoparticles with uniform sizes of 10, 20, and 31 nm were prepared by thermal decomposition of Fe(III) oleate or mandelate in a high-boiling point solvent (&gt;320 °C). To render the particles with hydrophilic and antifouling properties, their surface was coated with a PEG-containing bisphosphonate anchoring group. The PEGylated particles were characterized by a range of physicochemical methods, including dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and magnetization measurements. As the particle size increased from 10 to 31 nm, the amount of PEG coating decreased from 28.5 to 9 wt.%. The PEG formed a dense brush-like shell on the particle surface, which prevented particles from aggregating in water and PBS (pH 7.4) and maximized the circulation time in vivo . Magnetic resonance relaxometry confirmed that the PEG-modified Fe 3 O 4 nanoparticles had high relaxivity, which increased with increasing particle size. In the in vivo experiments in a mouse model, the particles provided visible contrast enhancement in the magnetic resonance images. Almost 70% of administrated 20-nm magnetic nanoparticles still circulated in the blood stream after four hours; however, their retention in the tumor was rather low, which was likely due to the antifouling properties of PEG.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-47262-w</identifier><identifier>PMID: 31341232</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59/57 ; 639/301 ; 639/925 ; 64/60 ; Animals ; Blood circulation ; Diphosphonates - chemistry ; Ferric Compounds ; Fourier transforms ; Humanities and Social Sciences ; Infrared spectroscopy ; Iron oxides ; Light scattering ; Magnetic Resonance Imaging ; Magnetite ; Magnetite Nanoparticles - chemistry ; Magnetite Nanoparticles - ultrastructure ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron, Transmission ; multidisciplinary ; Nanoparticles ; Neridronic acid ; Particle Size ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Science ; Science (multidisciplinary) ; Thermal decomposition ; Tissue Distribution ; Transmission electron microscopy</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.10765-12, Article 10765</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-2aba2e3bd4ec85fcfc0a465f48a3331e13c18cd2656ad9183504657ab124cd783</citedby><cites>FETCH-LOGICAL-c511t-2aba2e3bd4ec85fcfc0a465f48a3331e13c18cd2656ad9183504657ab124cd783</cites><orcidid>0000-0002-8334-4508 ; 0000-0002-6907-9701 ; 0000-0003-0479-2837 ; 0000-0003-2846-220X ; 0000-0002-6294-2939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656745/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656745/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31341232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patsula, Vitalii</creatorcontrib><creatorcontrib>Horák, Daniel</creatorcontrib><creatorcontrib>Kučka, Jan</creatorcontrib><creatorcontrib>Macková, Hana</creatorcontrib><creatorcontrib>Lobaz, Volodymyr</creatorcontrib><creatorcontrib>Francová, Pavla</creatorcontrib><creatorcontrib>Herynek, Vít</creatorcontrib><creatorcontrib>Heizer, Tomáš</creatorcontrib><creatorcontrib>Páral, Petr</creatorcontrib><creatorcontrib>Šefc, Luděk</creatorcontrib><title>Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Magnetite (Fe 3 O 4 ) nanoparticles with uniform sizes of 10, 20, and 31 nm were prepared by thermal decomposition of Fe(III) oleate or mandelate in a high-boiling point solvent (&gt;320 °C). To render the particles with hydrophilic and antifouling properties, their surface was coated with a PEG-containing bisphosphonate anchoring group. The PEGylated particles were characterized by a range of physicochemical methods, including dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and magnetization measurements. As the particle size increased from 10 to 31 nm, the amount of PEG coating decreased from 28.5 to 9 wt.%. The PEG formed a dense brush-like shell on the particle surface, which prevented particles from aggregating in water and PBS (pH 7.4) and maximized the circulation time in vivo . Magnetic resonance relaxometry confirmed that the PEG-modified Fe 3 O 4 nanoparticles had high relaxivity, which increased with increasing particle size. In the in vivo experiments in a mouse model, the particles provided visible contrast enhancement in the magnetic resonance images. Almost 70% of administrated 20-nm magnetic nanoparticles still circulated in the blood stream after four hours; however, their retention in the tumor was rather low, which was likely due to the antifouling properties of PEG.</description><subject>59/57</subject><subject>639/301</subject><subject>639/925</subject><subject>64/60</subject><subject>Animals</subject><subject>Blood circulation</subject><subject>Diphosphonates - chemistry</subject><subject>Ferric Compounds</subject><subject>Fourier transforms</subject><subject>Humanities and Social Sciences</subject><subject>Infrared spectroscopy</subject><subject>Iron oxides</subject><subject>Light scattering</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetite</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Magnetite Nanoparticles - ultrastructure</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Electron, Transmission</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Neridronic acid</subject><subject>Particle Size</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thermal decomposition</subject><subject>Tissue Distribution</subject><subject>Transmission electron microscopy</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UV1rFTEUDGKxpfYP9EEWfI5uvvbuvghSahUKCrbPIZucvU3JJtcka-mP8j96brfW-mJecsjMmRkyhJyy9h1rRf--SKaGnrZsoHLDO07vXpAj3kpFueD85bP5kJyUctviUXyQbHhFDgUTkiF2RH59v4_1BoovjYmumZPzk7em-hSbNDVL9FPKc_Pt_IJGyN7lFE0FuvIAF8w2QvW2iSamnck4BiiNgwp59hHHXU4hxS1yx5CSa6zPdgmrw95y9KhVavbj8vDm8RlzLAVwFWzwEfOEfTIIr8nBZEKBk8f7mFx_Or86-0wvv158Oft4Sa1irFJuRsNBjE6C7dVkJ9sa2alJ9kYIwYAJy3rreKc64wbWC9UivDEj49K6TS-OyYdVd7eMMzgLsWYT9C772eR7nYzX_yLR3-ht-qk7lNxIhQJvHwVy-rFAqfo2LTliZs15J3ivOGfI4ivL5lRKhunJgbV637JeW9bYsn5oWd_h0pvn2Z5W_nSKBLESCkL48fmv939kfwMhCbmp</recordid><startdate>20190724</startdate><enddate>20190724</enddate><creator>Patsula, Vitalii</creator><creator>Horák, Daniel</creator><creator>Kučka, Jan</creator><creator>Macková, Hana</creator><creator>Lobaz, Volodymyr</creator><creator>Francová, Pavla</creator><creator>Herynek, Vít</creator><creator>Heizer, Tomáš</creator><creator>Páral, Petr</creator><creator>Šefc, Luděk</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8334-4508</orcidid><orcidid>https://orcid.org/0000-0002-6907-9701</orcidid><orcidid>https://orcid.org/0000-0003-0479-2837</orcidid><orcidid>https://orcid.org/0000-0003-2846-220X</orcidid><orcidid>https://orcid.org/0000-0002-6294-2939</orcidid></search><sort><creationdate>20190724</creationdate><title>Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model</title><author>Patsula, Vitalii ; Horák, Daniel ; Kučka, Jan ; Macková, Hana ; Lobaz, Volodymyr ; Francová, Pavla ; Herynek, Vít ; Heizer, Tomáš ; Páral, Petr ; Šefc, Luděk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-2aba2e3bd4ec85fcfc0a465f48a3331e13c18cd2656ad9183504657ab124cd783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>59/57</topic><topic>639/301</topic><topic>639/925</topic><topic>64/60</topic><topic>Animals</topic><topic>Blood circulation</topic><topic>Diphosphonates - chemistry</topic><topic>Ferric Compounds</topic><topic>Fourier transforms</topic><topic>Humanities and Social Sciences</topic><topic>Infrared spectroscopy</topic><topic>Iron oxides</topic><topic>Light scattering</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetite</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Magnetite Nanoparticles - ultrastructure</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Electron, Transmission</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Neridronic acid</topic><topic>Particle Size</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thermal decomposition</topic><topic>Tissue Distribution</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patsula, Vitalii</creatorcontrib><creatorcontrib>Horák, Daniel</creatorcontrib><creatorcontrib>Kučka, Jan</creatorcontrib><creatorcontrib>Macková, Hana</creatorcontrib><creatorcontrib>Lobaz, Volodymyr</creatorcontrib><creatorcontrib>Francová, Pavla</creatorcontrib><creatorcontrib>Herynek, Vít</creatorcontrib><creatorcontrib>Heizer, Tomáš</creatorcontrib><creatorcontrib>Páral, Petr</creatorcontrib><creatorcontrib>Šefc, Luděk</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patsula, Vitalii</au><au>Horák, Daniel</au><au>Kučka, Jan</au><au>Macková, Hana</au><au>Lobaz, Volodymyr</au><au>Francová, Pavla</au><au>Herynek, Vít</au><au>Heizer, Tomáš</au><au>Páral, Petr</au><au>Šefc, Luděk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-07-24</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>10765</spage><epage>12</epage><pages>10765-12</pages><artnum>10765</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Magnetite (Fe 3 O 4 ) nanoparticles with uniform sizes of 10, 20, and 31 nm were prepared by thermal decomposition of Fe(III) oleate or mandelate in a high-boiling point solvent (&gt;320 °C). To render the particles with hydrophilic and antifouling properties, their surface was coated with a PEG-containing bisphosphonate anchoring group. The PEGylated particles were characterized by a range of physicochemical methods, including dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and magnetization measurements. As the particle size increased from 10 to 31 nm, the amount of PEG coating decreased from 28.5 to 9 wt.%. The PEG formed a dense brush-like shell on the particle surface, which prevented particles from aggregating in water and PBS (pH 7.4) and maximized the circulation time in vivo . Magnetic resonance relaxometry confirmed that the PEG-modified Fe 3 O 4 nanoparticles had high relaxivity, which increased with increasing particle size. In the in vivo experiments in a mouse model, the particles provided visible contrast enhancement in the magnetic resonance images. Almost 70% of administrated 20-nm magnetic nanoparticles still circulated in the blood stream after four hours; however, their retention in the tumor was rather low, which was likely due to the antifouling properties of PEG.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31341232</pmid><doi>10.1038/s41598-019-47262-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8334-4508</orcidid><orcidid>https://orcid.org/0000-0002-6907-9701</orcidid><orcidid>https://orcid.org/0000-0003-0479-2837</orcidid><orcidid>https://orcid.org/0000-0003-2846-220X</orcidid><orcidid>https://orcid.org/0000-0002-6294-2939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-07, Vol.9 (1), p.10765-12, Article 10765
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6656745
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 59/57
639/301
639/925
64/60
Animals
Blood circulation
Diphosphonates - chemistry
Ferric Compounds
Fourier transforms
Humanities and Social Sciences
Infrared spectroscopy
Iron oxides
Light scattering
Magnetic Resonance Imaging
Magnetite
Magnetite Nanoparticles - chemistry
Magnetite Nanoparticles - ultrastructure
Male
Mice
Mice, Inbred C57BL
Microscopy, Electron, Transmission
multidisciplinary
Nanoparticles
Neridronic acid
Particle Size
Polyethylene glycol
Polyethylene Glycols - chemistry
Science
Science (multidisciplinary)
Thermal decomposition
Tissue Distribution
Transmission electron microscopy
title Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20modification%20of%20uniform%20PEG-neridronate-modified%20magnetic%20nanoparticles%20determines%20prolonged%20blood%20circulation%20and%20biodistribution%20in%20a%20mouse%20preclinical%20model&rft.jtitle=Scientific%20reports&rft.au=Patsula,%20Vitalii&rft.date=2019-07-24&rft.volume=9&rft.issue=1&rft.spage=10765&rft.epage=12&rft.pages=10765-12&rft.artnum=10765&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-47262-w&rft_dat=%3Cproquest_pubme%3E2263285221%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263285221&rft_id=info:pmid/31341232&rfr_iscdi=true