Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes

Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2019-06, Vol.12 (13), p.2055
Hauptverfasser: Kurita, Hiroki, Katabira, Kenichi, Yoshida, Yu, Narita, Fumio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 2055
container_title Materials
container_volume 12
creator Kurita, Hiroki
Katabira, Kenichi
Yoshida, Yu
Narita, Fumio
description Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy harvesting performance after being used several times due to their brittleness. In this study, we focused on Fe-Co magnetostrictive materials and fabricated Fe-Co magnetostrictive fiber integrated shoes. We revealed that Fe-Co magnetostrictive fiber integrated shoes are capable of generating 1.2 µJ from 1000 steps of usual walking by the Villari (inverse magnetostrictive) effect. It seems that the output energy is dependent on user habit on ambulation, not on their weight. From both a mechanical and functional point of view, Fe-Co magnetostrictive fiber integrated shoes demonstrated stable energy harvesting performance after being used many times. It is likely that Fe-Co magnetostrictive fiber integrated shoes are available as sustainable and wearable energy harvesting devices.
doi_str_mv 10.3390/ma12132055
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250620966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-44b57c4723f81db686a02040d77932950c23f47885cdcb37358b4db2e20fda363</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoKurFHyALXkSo5jubiyCl1aLiQT2HbHa6jbSbmqSV_nu3qPVjLjMwD-98vAgdE3zBmMaXM0soYRQLsYX2idayRzTn27_qPXSU0ivugjFSUr2L9hihXGnN9tHdMIScMsyLQQuxWRW3Ni4hZd82xbvPkyJPoHiwTQs5pBy9y34JxdBXEItRm6GJNkNdPE0CpEO0M7bTBEdf-QC9DAfP_dve_ePNqH9933OCyNzjvBLKcUXZuCR1JUtpMcUc10ppRrXArutwVZbC1a5iiomy4nVFgeJxbZlkB-jqU3e-qGZQO2hztFMzj35m48oE683fTusnpglLI6VYP6sTOPsSiOFt0V1rZj45mE5tC2GRDKUCS4q1XM86_Ye-hkVsu_MMFbyUTCm1ps4_KRdDShHGm2UINmubzI9NHXzye_0N-m0K-wBZWoyd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548637776</pqid></control><display><type>article</type><title>Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kurita, Hiroki ; Katabira, Kenichi ; Yoshida, Yu ; Narita, Fumio</creator><creatorcontrib>Kurita, Hiroki ; Katabira, Kenichi ; Yoshida, Yu ; Narita, Fumio</creatorcontrib><description>Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy harvesting performance after being used several times due to their brittleness. In this study, we focused on Fe-Co magnetostrictive materials and fabricated Fe-Co magnetostrictive fiber integrated shoes. We revealed that Fe-Co magnetostrictive fiber integrated shoes are capable of generating 1.2 µJ from 1000 steps of usual walking by the Villari (inverse magnetostrictive) effect. It seems that the output energy is dependent on user habit on ambulation, not on their weight. From both a mechanical and functional point of view, Fe-Co magnetostrictive fiber integrated shoes demonstrated stable energy harvesting performance after being used many times. It is likely that Fe-Co magnetostrictive fiber integrated shoes are available as sustainable and wearable energy harvesting devices.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12132055</identifier><identifier>PMID: 31247993</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cobalt ; Communication ; Devices ; Energy ; Energy harvesting ; Iron ; Magnetostriction ; Piezoelectricity ; Walking ; Wearable technology</subject><ispartof>Materials, 2019-06, Vol.12 (13), p.2055</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-44b57c4723f81db686a02040d77932950c23f47885cdcb37358b4db2e20fda363</citedby><cites>FETCH-LOGICAL-c516t-44b57c4723f81db686a02040d77932950c23f47885cdcb37358b4db2e20fda363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651213/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651213/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31247993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurita, Hiroki</creatorcontrib><creatorcontrib>Katabira, Kenichi</creatorcontrib><creatorcontrib>Yoshida, Yu</creatorcontrib><creatorcontrib>Narita, Fumio</creatorcontrib><title>Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy harvesting performance after being used several times due to their brittleness. In this study, we focused on Fe-Co magnetostrictive materials and fabricated Fe-Co magnetostrictive fiber integrated shoes. We revealed that Fe-Co magnetostrictive fiber integrated shoes are capable of generating 1.2 µJ from 1000 steps of usual walking by the Villari (inverse magnetostrictive) effect. It seems that the output energy is dependent on user habit on ambulation, not on their weight. From both a mechanical and functional point of view, Fe-Co magnetostrictive fiber integrated shoes demonstrated stable energy harvesting performance after being used many times. It is likely that Fe-Co magnetostrictive fiber integrated shoes are available as sustainable and wearable energy harvesting devices.</description><subject>Cobalt</subject><subject>Communication</subject><subject>Devices</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Iron</subject><subject>Magnetostriction</subject><subject>Piezoelectricity</subject><subject>Walking</subject><subject>Wearable technology</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1LAzEQhoMoKurFHyALXkSo5jubiyCl1aLiQT2HbHa6jbSbmqSV_nu3qPVjLjMwD-98vAgdE3zBmMaXM0soYRQLsYX2idayRzTn27_qPXSU0ivugjFSUr2L9hihXGnN9tHdMIScMsyLQQuxWRW3Ni4hZd82xbvPkyJPoHiwTQs5pBy9y34JxdBXEItRm6GJNkNdPE0CpEO0M7bTBEdf-QC9DAfP_dve_ePNqH9933OCyNzjvBLKcUXZuCR1JUtpMcUc10ppRrXArutwVZbC1a5iiomy4nVFgeJxbZlkB-jqU3e-qGZQO2hztFMzj35m48oE683fTusnpglLI6VYP6sTOPsSiOFt0V1rZj45mE5tC2GRDKUCS4q1XM86_Ye-hkVsu_MMFbyUTCm1ps4_KRdDShHGm2UINmubzI9NHXzye_0N-m0K-wBZWoyd</recordid><startdate>20190626</startdate><enddate>20190626</enddate><creator>Kurita, Hiroki</creator><creator>Katabira, Kenichi</creator><creator>Yoshida, Yu</creator><creator>Narita, Fumio</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190626</creationdate><title>Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes</title><author>Kurita, Hiroki ; Katabira, Kenichi ; Yoshida, Yu ; Narita, Fumio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-44b57c4723f81db686a02040d77932950c23f47885cdcb37358b4db2e20fda363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cobalt</topic><topic>Communication</topic><topic>Devices</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Iron</topic><topic>Magnetostriction</topic><topic>Piezoelectricity</topic><topic>Walking</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurita, Hiroki</creatorcontrib><creatorcontrib>Katabira, Kenichi</creatorcontrib><creatorcontrib>Yoshida, Yu</creatorcontrib><creatorcontrib>Narita, Fumio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurita, Hiroki</au><au>Katabira, Kenichi</au><au>Yoshida, Yu</au><au>Narita, Fumio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-06-26</date><risdate>2019</risdate><volume>12</volume><issue>13</issue><spage>2055</spage><pages>2055-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy harvesting performance after being used several times due to their brittleness. In this study, we focused on Fe-Co magnetostrictive materials and fabricated Fe-Co magnetostrictive fiber integrated shoes. We revealed that Fe-Co magnetostrictive fiber integrated shoes are capable of generating 1.2 µJ from 1000 steps of usual walking by the Villari (inverse magnetostrictive) effect. It seems that the output energy is dependent on user habit on ambulation, not on their weight. From both a mechanical and functional point of view, Fe-Co magnetostrictive fiber integrated shoes demonstrated stable energy harvesting performance after being used many times. It is likely that Fe-Co magnetostrictive fiber integrated shoes are available as sustainable and wearable energy harvesting devices.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31247993</pmid><doi>10.3390/ma12132055</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2019-06, Vol.12 (13), p.2055
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651213
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Cobalt
Communication
Devices
Energy
Energy harvesting
Iron
Magnetostriction
Piezoelectricity
Walking
Wearable technology
title Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Footstep%20Energy%20Harvesting%20with%20the%20Magnetostrictive%20Fiber%20Integrated%20Shoes&rft.jtitle=Materials&rft.au=Kurita,%20Hiroki&rft.date=2019-06-26&rft.volume=12&rft.issue=13&rft.spage=2055&rft.pages=2055-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12132055&rft_dat=%3Cproquest_pubme%3E2250620966%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548637776&rft_id=info:pmid/31247993&rfr_iscdi=true