Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes
Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy ha...
Gespeichert in:
Veröffentlicht in: | Materials 2019-06, Vol.12 (13), p.2055 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 2055 |
container_title | Materials |
container_volume | 12 |
creator | Kurita, Hiroki Katabira, Kenichi Yoshida, Yu Narita, Fumio |
description | Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy harvesting performance after being used several times due to their brittleness. In this study, we focused on Fe-Co magnetostrictive materials and fabricated Fe-Co magnetostrictive fiber integrated shoes. We revealed that Fe-Co magnetostrictive fiber integrated shoes are capable of generating 1.2 µJ from 1000 steps of usual walking by the Villari (inverse magnetostrictive) effect. It seems that the output energy is dependent on user habit on ambulation, not on their weight. From both a mechanical and functional point of view, Fe-Co magnetostrictive fiber integrated shoes demonstrated stable energy harvesting performance after being used many times. It is likely that Fe-Co magnetostrictive fiber integrated shoes are available as sustainable and wearable energy harvesting devices. |
doi_str_mv | 10.3390/ma12132055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250620966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-44b57c4723f81db686a02040d77932950c23f47885cdcb37358b4db2e20fda363</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoKurFHyALXkSo5jubiyCl1aLiQT2HbHa6jbSbmqSV_nu3qPVjLjMwD-98vAgdE3zBmMaXM0soYRQLsYX2idayRzTn27_qPXSU0ivugjFSUr2L9hihXGnN9tHdMIScMsyLQQuxWRW3Ni4hZd82xbvPkyJPoHiwTQs5pBy9y34JxdBXEItRm6GJNkNdPE0CpEO0M7bTBEdf-QC9DAfP_dve_ePNqH9933OCyNzjvBLKcUXZuCR1JUtpMcUc10ppRrXArutwVZbC1a5iiomy4nVFgeJxbZlkB-jqU3e-qGZQO2hztFMzj35m48oE683fTusnpglLI6VYP6sTOPsSiOFt0V1rZj45mE5tC2GRDKUCS4q1XM86_Ye-hkVsu_MMFbyUTCm1ps4_KRdDShHGm2UINmubzI9NHXzye_0N-m0K-wBZWoyd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548637776</pqid></control><display><type>article</type><title>Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kurita, Hiroki ; Katabira, Kenichi ; Yoshida, Yu ; Narita, Fumio</creator><creatorcontrib>Kurita, Hiroki ; Katabira, Kenichi ; Yoshida, Yu ; Narita, Fumio</creatorcontrib><description>Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy harvesting performance after being used several times due to their brittleness. In this study, we focused on Fe-Co magnetostrictive materials and fabricated Fe-Co magnetostrictive fiber integrated shoes. We revealed that Fe-Co magnetostrictive fiber integrated shoes are capable of generating 1.2 µJ from 1000 steps of usual walking by the Villari (inverse magnetostrictive) effect. It seems that the output energy is dependent on user habit on ambulation, not on their weight. From both a mechanical and functional point of view, Fe-Co magnetostrictive fiber integrated shoes demonstrated stable energy harvesting performance after being used many times. It is likely that Fe-Co magnetostrictive fiber integrated shoes are available as sustainable and wearable energy harvesting devices.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12132055</identifier><identifier>PMID: 31247993</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cobalt ; Communication ; Devices ; Energy ; Energy harvesting ; Iron ; Magnetostriction ; Piezoelectricity ; Walking ; Wearable technology</subject><ispartof>Materials, 2019-06, Vol.12 (13), p.2055</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-44b57c4723f81db686a02040d77932950c23f47885cdcb37358b4db2e20fda363</citedby><cites>FETCH-LOGICAL-c516t-44b57c4723f81db686a02040d77932950c23f47885cdcb37358b4db2e20fda363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651213/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651213/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31247993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurita, Hiroki</creatorcontrib><creatorcontrib>Katabira, Kenichi</creatorcontrib><creatorcontrib>Yoshida, Yu</creatorcontrib><creatorcontrib>Narita, Fumio</creatorcontrib><title>Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy harvesting performance after being used several times due to their brittleness. In this study, we focused on Fe-Co magnetostrictive materials and fabricated Fe-Co magnetostrictive fiber integrated shoes. We revealed that Fe-Co magnetostrictive fiber integrated shoes are capable of generating 1.2 µJ from 1000 steps of usual walking by the Villari (inverse magnetostrictive) effect. It seems that the output energy is dependent on user habit on ambulation, not on their weight. From both a mechanical and functional point of view, Fe-Co magnetostrictive fiber integrated shoes demonstrated stable energy harvesting performance after being used many times. It is likely that Fe-Co magnetostrictive fiber integrated shoes are available as sustainable and wearable energy harvesting devices.</description><subject>Cobalt</subject><subject>Communication</subject><subject>Devices</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Iron</subject><subject>Magnetostriction</subject><subject>Piezoelectricity</subject><subject>Walking</subject><subject>Wearable technology</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1LAzEQhoMoKurFHyALXkSo5jubiyCl1aLiQT2HbHa6jbSbmqSV_nu3qPVjLjMwD-98vAgdE3zBmMaXM0soYRQLsYX2idayRzTn27_qPXSU0ivugjFSUr2L9hihXGnN9tHdMIScMsyLQQuxWRW3Ni4hZd82xbvPkyJPoHiwTQs5pBy9y34JxdBXEItRm6GJNkNdPE0CpEO0M7bTBEdf-QC9DAfP_dve_ePNqH9933OCyNzjvBLKcUXZuCR1JUtpMcUc10ppRrXArutwVZbC1a5iiomy4nVFgeJxbZlkB-jqU3e-qGZQO2hztFMzj35m48oE683fTusnpglLI6VYP6sTOPsSiOFt0V1rZj45mE5tC2GRDKUCS4q1XM86_Ye-hkVsu_MMFbyUTCm1ps4_KRdDShHGm2UINmubzI9NHXzye_0N-m0K-wBZWoyd</recordid><startdate>20190626</startdate><enddate>20190626</enddate><creator>Kurita, Hiroki</creator><creator>Katabira, Kenichi</creator><creator>Yoshida, Yu</creator><creator>Narita, Fumio</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190626</creationdate><title>Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes</title><author>Kurita, Hiroki ; Katabira, Kenichi ; Yoshida, Yu ; Narita, Fumio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-44b57c4723f81db686a02040d77932950c23f47885cdcb37358b4db2e20fda363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cobalt</topic><topic>Communication</topic><topic>Devices</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Iron</topic><topic>Magnetostriction</topic><topic>Piezoelectricity</topic><topic>Walking</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurita, Hiroki</creatorcontrib><creatorcontrib>Katabira, Kenichi</creatorcontrib><creatorcontrib>Yoshida, Yu</creatorcontrib><creatorcontrib>Narita, Fumio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurita, Hiroki</au><au>Katabira, Kenichi</au><au>Yoshida, Yu</au><au>Narita, Fumio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-06-26</date><risdate>2019</risdate><volume>12</volume><issue>13</issue><spage>2055</spage><pages>2055-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy harvesting performance after being used several times due to their brittleness. In this study, we focused on Fe-Co magnetostrictive materials and fabricated Fe-Co magnetostrictive fiber integrated shoes. We revealed that Fe-Co magnetostrictive fiber integrated shoes are capable of generating 1.2 µJ from 1000 steps of usual walking by the Villari (inverse magnetostrictive) effect. It seems that the output energy is dependent on user habit on ambulation, not on their weight. From both a mechanical and functional point of view, Fe-Co magnetostrictive fiber integrated shoes demonstrated stable energy harvesting performance after being used many times. It is likely that Fe-Co magnetostrictive fiber integrated shoes are available as sustainable and wearable energy harvesting devices.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31247993</pmid><doi>10.3390/ma12132055</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2019-06, Vol.12 (13), p.2055 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651213 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Cobalt Communication Devices Energy Energy harvesting Iron Magnetostriction Piezoelectricity Walking Wearable technology |
title | Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Footstep%20Energy%20Harvesting%20with%20the%20Magnetostrictive%20Fiber%20Integrated%20Shoes&rft.jtitle=Materials&rft.au=Kurita,%20Hiroki&rft.date=2019-06-26&rft.volume=12&rft.issue=13&rft.spage=2055&rft.pages=2055-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12132055&rft_dat=%3Cproquest_pubme%3E2250620966%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548637776&rft_id=info:pmid/31247993&rfr_iscdi=true |