Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy

Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-07, Vol.20 (13), p.3365
Hauptverfasser: Sznajder, Łukasz J, Swanson, Maurice S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 3365
container_title International journal of molecular sciences
container_volume 20
creator Sznajder, Łukasz J
Swanson, Maurice S
description Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant (DM1) and (DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUG , CCUG ) RNAs, respectively. These CUG and CCUG RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.
doi_str_mv 10.3390/ijms20133365
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2270013196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-b3f496b438c81ef1f269f14c9323e3b30a3a45b42890123335315450d7368bde3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERT_gxhlZ4sKBFNtjO8kFqeoHILWAlnK2nGTS9WpjB9tbsf99XbVUW05jjX96em8eIW85OwZo2Se3mpJgHAC0ekEOuBSiYkzXL3fe--QwpRVjAoRqX5F94CCgVeyALH4tQ8z02voBJ7rAGW2m539n65MLPtGyp4vvJ9UVDs5mHOhPm5fhBj0ml6jz9GobcvCup2fblGOYl9vXZG-064RvHucR-X1xfn36tbr88eXb6cll1cu6yVUHo2x1J6HpG44jH4VuRy77tlhD6IBZsFJ1UjQt46LEU8CVVGyoQTfdgHBEPj_ozptuwqFHn6Ndmzm6ycatCdaZ5z_eLc1NuDVaK85rWQQ-PArE8GeDKZvJpR7Xa-sxbJIRomblsLzVBX3_H7oKm-hLPHNvTTSgNCvUxweqjyGliOOTGc7MfVlmt6yCv9sN8AT_awfuAOtqjxM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333283560</pqid></control><display><type>article</type><title>Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Sznajder, Łukasz J ; Swanson, Maurice S</creator><creatorcontrib>Sznajder, Łukasz J ; Swanson, Maurice S</creatorcontrib><description>Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant (DM1) and (DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUG , CCUG ) RNAs, respectively. These CUG and CCUG RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20133365</identifier><identifier>PMID: 31323950</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alternative splicing ; Alternative Splicing - genetics ; Amyotrophic lateral sclerosis ; Animal models ; Animals ; Atrophy ; Biopsy ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Deoxyribonucleic acid ; Depletion ; Disease ; DMPK protein ; DNA ; Dystrophy ; Embryos ; Fetuses ; Gene expression ; Humans ; Kinases ; Microsatellite Repeats - genetics ; mRNA ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Mutation ; Myotonic dystrophy ; Myotonic Dystrophy - genetics ; Phenotypes ; Phosphorylation ; Protein kinase C ; Proteins ; Reversion ; Review ; Ribonucleoproteins - genetics ; Ribonucleoproteins - metabolism ; RNA - genetics ; Skeletal muscle ; Splicing ; Trinucleotide Repeat Expansion - genetics</subject><ispartof>International journal of molecular sciences, 2019-07, Vol.20 (13), p.3365</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-b3f496b438c81ef1f269f14c9323e3b30a3a45b42890123335315450d7368bde3</citedby><cites>FETCH-LOGICAL-c478t-b3f496b438c81ef1f269f14c9323e3b30a3a45b42890123335315450d7368bde3</cites><orcidid>0000-0001-6822-6485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651174/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651174/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31323950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sznajder, Łukasz J</creatorcontrib><creatorcontrib>Swanson, Maurice S</creatorcontrib><title>Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant (DM1) and (DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUG , CCUG ) RNAs, respectively. These CUG and CCUG RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.</description><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Biopsy</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Depletion</subject><subject>Disease</subject><subject>DMPK protein</subject><subject>DNA</subject><subject>Dystrophy</subject><subject>Embryos</subject><subject>Fetuses</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Kinases</subject><subject>Microsatellite Repeats - genetics</subject><subject>mRNA</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Myotonic dystrophy</subject><subject>Myotonic Dystrophy - genetics</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Protein kinase C</subject><subject>Proteins</subject><subject>Reversion</subject><subject>Review</subject><subject>Ribonucleoproteins - genetics</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA - genetics</subject><subject>Skeletal muscle</subject><subject>Splicing</subject><subject>Trinucleotide Repeat Expansion - genetics</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1v1DAQxS1ERT_gxhlZ4sKBFNtjO8kFqeoHILWAlnK2nGTS9WpjB9tbsf99XbVUW05jjX96em8eIW85OwZo2Se3mpJgHAC0ekEOuBSiYkzXL3fe--QwpRVjAoRqX5F94CCgVeyALH4tQ8z02voBJ7rAGW2m539n65MLPtGyp4vvJ9UVDs5mHOhPm5fhBj0ml6jz9GobcvCup2fblGOYl9vXZG-064RvHucR-X1xfn36tbr88eXb6cll1cu6yVUHo2x1J6HpG44jH4VuRy77tlhD6IBZsFJ1UjQt46LEU8CVVGyoQTfdgHBEPj_ozptuwqFHn6Ndmzm6ycatCdaZ5z_eLc1NuDVaK85rWQQ-PArE8GeDKZvJpR7Xa-sxbJIRomblsLzVBX3_H7oKm-hLPHNvTTSgNCvUxweqjyGliOOTGc7MfVlmt6yCv9sN8AT_awfuAOtqjxM</recordid><startdate>20190709</startdate><enddate>20190709</enddate><creator>Sznajder, Łukasz J</creator><creator>Swanson, Maurice S</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6822-6485</orcidid></search><sort><creationdate>20190709</creationdate><title>Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy</title><author>Sznajder, Łukasz J ; Swanson, Maurice S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-b3f496b438c81ef1f269f14c9323e3b30a3a45b42890123335315450d7368bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Biopsy</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Depletion</topic><topic>Disease</topic><topic>DMPK protein</topic><topic>DNA</topic><topic>Dystrophy</topic><topic>Embryos</topic><topic>Fetuses</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Kinases</topic><topic>Microsatellite Repeats - genetics</topic><topic>mRNA</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Myotonic dystrophy</topic><topic>Myotonic Dystrophy - genetics</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Protein kinase C</topic><topic>Proteins</topic><topic>Reversion</topic><topic>Review</topic><topic>Ribonucleoproteins - genetics</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA - genetics</topic><topic>Skeletal muscle</topic><topic>Splicing</topic><topic>Trinucleotide Repeat Expansion - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sznajder, Łukasz J</creatorcontrib><creatorcontrib>Swanson, Maurice S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sznajder, Łukasz J</au><au>Swanson, Maurice S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-07-09</date><risdate>2019</risdate><volume>20</volume><issue>13</issue><spage>3365</spage><pages>3365-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant (DM1) and (DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUG , CCUG ) RNAs, respectively. These CUG and CCUG RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31323950</pmid><doi>10.3390/ijms20133365</doi><orcidid>https://orcid.org/0000-0001-6822-6485</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2019-07, Vol.20 (13), p.3365
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651174
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; PubMed Central; EZB Electronic Journals Library
subjects Alternative splicing
Alternative Splicing - genetics
Amyotrophic lateral sclerosis
Animal models
Animals
Atrophy
Biopsy
Cell Nucleus - genetics
Cell Nucleus - metabolism
Deoxyribonucleic acid
Depletion
Disease
DMPK protein
DNA
Dystrophy
Embryos
Fetuses
Gene expression
Humans
Kinases
Microsatellite Repeats - genetics
mRNA
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Mutation
Myotonic dystrophy
Myotonic Dystrophy - genetics
Phenotypes
Phosphorylation
Protein kinase C
Proteins
Reversion
Review
Ribonucleoproteins - genetics
Ribonucleoproteins - metabolism
RNA - genetics
Skeletal muscle
Splicing
Trinucleotide Repeat Expansion - genetics
title Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20Tandem%20Repeat%20Expansions%20and%20RNA-Mediated%20Pathogenesis%20in%20Myotonic%20Dystrophy&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Sznajder,%20%C5%81ukasz%20J&rft.date=2019-07-09&rft.volume=20&rft.issue=13&rft.spage=3365&rft.pages=3365-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20133365&rft_dat=%3Cproquest_pubme%3E2270013196%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333283560&rft_id=info:pmid/31323950&rfr_iscdi=true