Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy
Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2019-07, Vol.20 (13), p.3365 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 3365 |
container_title | International journal of molecular sciences |
container_volume | 20 |
creator | Sznajder, Łukasz J Swanson, Maurice S |
description | Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant
(DM1) and
(DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUG
, CCUG
) RNAs, respectively. These CUG
and CCUG
RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly. |
doi_str_mv | 10.3390/ijms20133365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2270013196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-b3f496b438c81ef1f269f14c9323e3b30a3a45b42890123335315450d7368bde3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERT_gxhlZ4sKBFNtjO8kFqeoHILWAlnK2nGTS9WpjB9tbsf99XbVUW05jjX96em8eIW85OwZo2Se3mpJgHAC0ekEOuBSiYkzXL3fe--QwpRVjAoRqX5F94CCgVeyALH4tQ8z02voBJ7rAGW2m539n65MLPtGyp4vvJ9UVDs5mHOhPm5fhBj0ml6jz9GobcvCup2fblGOYl9vXZG-064RvHucR-X1xfn36tbr88eXb6cll1cu6yVUHo2x1J6HpG44jH4VuRy77tlhD6IBZsFJ1UjQt46LEU8CVVGyoQTfdgHBEPj_ozptuwqFHn6Ndmzm6ycatCdaZ5z_eLc1NuDVaK85rWQQ-PArE8GeDKZvJpR7Xa-sxbJIRomblsLzVBX3_H7oKm-hLPHNvTTSgNCvUxweqjyGliOOTGc7MfVlmt6yCv9sN8AT_awfuAOtqjxM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333283560</pqid></control><display><type>article</type><title>Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Sznajder, Łukasz J ; Swanson, Maurice S</creator><creatorcontrib>Sznajder, Łukasz J ; Swanson, Maurice S</creatorcontrib><description>Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant
(DM1) and
(DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUG
, CCUG
) RNAs, respectively. These CUG
and CCUG
RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20133365</identifier><identifier>PMID: 31323950</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alternative splicing ; Alternative Splicing - genetics ; Amyotrophic lateral sclerosis ; Animal models ; Animals ; Atrophy ; Biopsy ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Deoxyribonucleic acid ; Depletion ; Disease ; DMPK protein ; DNA ; Dystrophy ; Embryos ; Fetuses ; Gene expression ; Humans ; Kinases ; Microsatellite Repeats - genetics ; mRNA ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Mutation ; Myotonic dystrophy ; Myotonic Dystrophy - genetics ; Phenotypes ; Phosphorylation ; Protein kinase C ; Proteins ; Reversion ; Review ; Ribonucleoproteins - genetics ; Ribonucleoproteins - metabolism ; RNA - genetics ; Skeletal muscle ; Splicing ; Trinucleotide Repeat Expansion - genetics</subject><ispartof>International journal of molecular sciences, 2019-07, Vol.20 (13), p.3365</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-b3f496b438c81ef1f269f14c9323e3b30a3a45b42890123335315450d7368bde3</citedby><cites>FETCH-LOGICAL-c478t-b3f496b438c81ef1f269f14c9323e3b30a3a45b42890123335315450d7368bde3</cites><orcidid>0000-0001-6822-6485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651174/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651174/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31323950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sznajder, Łukasz J</creatorcontrib><creatorcontrib>Swanson, Maurice S</creatorcontrib><title>Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant
(DM1) and
(DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUG
, CCUG
) RNAs, respectively. These CUG
and CCUG
RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.</description><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Biopsy</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Depletion</subject><subject>Disease</subject><subject>DMPK protein</subject><subject>DNA</subject><subject>Dystrophy</subject><subject>Embryos</subject><subject>Fetuses</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Kinases</subject><subject>Microsatellite Repeats - genetics</subject><subject>mRNA</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Myotonic dystrophy</subject><subject>Myotonic Dystrophy - genetics</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Protein kinase C</subject><subject>Proteins</subject><subject>Reversion</subject><subject>Review</subject><subject>Ribonucleoproteins - genetics</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA - genetics</subject><subject>Skeletal muscle</subject><subject>Splicing</subject><subject>Trinucleotide Repeat Expansion - genetics</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1v1DAQxS1ERT_gxhlZ4sKBFNtjO8kFqeoHILWAlnK2nGTS9WpjB9tbsf99XbVUW05jjX96em8eIW85OwZo2Se3mpJgHAC0ekEOuBSiYkzXL3fe--QwpRVjAoRqX5F94CCgVeyALH4tQ8z02voBJ7rAGW2m539n65MLPtGyp4vvJ9UVDs5mHOhPm5fhBj0ml6jz9GobcvCup2fblGOYl9vXZG-064RvHucR-X1xfn36tbr88eXb6cll1cu6yVUHo2x1J6HpG44jH4VuRy77tlhD6IBZsFJ1UjQt46LEU8CVVGyoQTfdgHBEPj_ozptuwqFHn6Ndmzm6ycatCdaZ5z_eLc1NuDVaK85rWQQ-PArE8GeDKZvJpR7Xa-sxbJIRomblsLzVBX3_H7oKm-hLPHNvTTSgNCvUxweqjyGliOOTGc7MfVlmt6yCv9sN8AT_awfuAOtqjxM</recordid><startdate>20190709</startdate><enddate>20190709</enddate><creator>Sznajder, Łukasz J</creator><creator>Swanson, Maurice S</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6822-6485</orcidid></search><sort><creationdate>20190709</creationdate><title>Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy</title><author>Sznajder, Łukasz J ; Swanson, Maurice S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-b3f496b438c81ef1f269f14c9323e3b30a3a45b42890123335315450d7368bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Biopsy</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Depletion</topic><topic>Disease</topic><topic>DMPK protein</topic><topic>DNA</topic><topic>Dystrophy</topic><topic>Embryos</topic><topic>Fetuses</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Kinases</topic><topic>Microsatellite Repeats - genetics</topic><topic>mRNA</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Myotonic dystrophy</topic><topic>Myotonic Dystrophy - genetics</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Protein kinase C</topic><topic>Proteins</topic><topic>Reversion</topic><topic>Review</topic><topic>Ribonucleoproteins - genetics</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA - genetics</topic><topic>Skeletal muscle</topic><topic>Splicing</topic><topic>Trinucleotide Repeat Expansion - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sznajder, Łukasz J</creatorcontrib><creatorcontrib>Swanson, Maurice S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sznajder, Łukasz J</au><au>Swanson, Maurice S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-07-09</date><risdate>2019</risdate><volume>20</volume><issue>13</issue><spage>3365</spage><pages>3365-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant
(DM1) and
(DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUG
, CCUG
) RNAs, respectively. These CUG
and CCUG
RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31323950</pmid><doi>10.3390/ijms20133365</doi><orcidid>https://orcid.org/0000-0001-6822-6485</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2019-07, Vol.20 (13), p.3365 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651174 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; PubMed Central; EZB Electronic Journals Library |
subjects | Alternative splicing Alternative Splicing - genetics Amyotrophic lateral sclerosis Animal models Animals Atrophy Biopsy Cell Nucleus - genetics Cell Nucleus - metabolism Deoxyribonucleic acid Depletion Disease DMPK protein DNA Dystrophy Embryos Fetuses Gene expression Humans Kinases Microsatellite Repeats - genetics mRNA Muscle, Skeletal - metabolism Muscles Musculoskeletal system Mutation Myotonic dystrophy Myotonic Dystrophy - genetics Phenotypes Phosphorylation Protein kinase C Proteins Reversion Review Ribonucleoproteins - genetics Ribonucleoproteins - metabolism RNA - genetics Skeletal muscle Splicing Trinucleotide Repeat Expansion - genetics |
title | Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20Tandem%20Repeat%20Expansions%20and%20RNA-Mediated%20Pathogenesis%20in%20Myotonic%20Dystrophy&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Sznajder,%20%C5%81ukasz%20J&rft.date=2019-07-09&rft.volume=20&rft.issue=13&rft.spage=3365&rft.pages=3365-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20133365&rft_dat=%3Cproquest_pubme%3E2270013196%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333283560&rft_id=info:pmid/31323950&rfr_iscdi=true |