Surface plastic flow in polishing of rough surfaces
We present experimental evidence for a new mechanism for how smooth surfaces emerge during repetitive sliding contacts, as in polishing. Electron microscopy observations of Ti-6Al-4V surface with a spherical asperity structure—realized via additive manufacturing—during successive polishing stages su...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-07, Vol.9 (1), p.10617-11, Article 10617 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 10617 |
container_title | Scientific reports |
container_volume | 9 |
creator | Iquebal, Ashif S. Sagapuram, Dinakar Bukkapatnam, Satish T. S. |
description | We present experimental evidence for a new mechanism for how smooth surfaces emerge during repetitive sliding contacts, as in polishing. Electron microscopy observations of Ti-6Al-4V surface with a spherical asperity structure—realized via additive manufacturing—during successive polishing stages suggest that asperity-abrasive contacts exhibit viscous behavior, where the asperity material flows in the form of thin (1–10
μ
m) fluid-like layers. Subsequent bridging of these layers among neighboring asperities results in progressive surface smoothening. Using analytical asperity-abrasive contact temperature modeling and microstructural characterization, we show that the sliding contacts encounter flash temperatures of the order of 700–900 K which is in the range of the dynamic recrystallization temperature of the material considered, thus supporting the experimental observations. Besides providing a new perspective on the long-held mechanism of polishing, our observations provide a novel approach based on graph theory to quantitatively characterize the evolution of surface morphology. Results suggest that the graph representation offers a more efficient measure to characterize the surface morphology emerging at various stages of polishing. The research findings and observations are of broad relevance to the understanding of plastic flow behavior of sliding contacts ubiquitous in materials processing, tribology, and natural geological processes as well as present unique opportunities to tailor the microstructures by controlling the thermomechanics of the asperity-abrasive contacts. |
doi_str_mv | 10.1038/s41598-019-46997-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6650475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2292873774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-deded0c4a5cbd3dedec11aa99339b852be9d758469e84b3f620e135db0dfb9fb3</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhi0EolXpH2BAkVhYAv5M4gUJVXxJlRiA2XIcJ3WVxsFOqPj3uKSUwoBvsE_33Os7vQCcIniJIMmuPEWMZzFEPKYJ52m8PgBjDCmLMcH4cO89AlPvlzAchjlF_BiMCCIkzWA2BuS5d6VUOmpr6TujorK268g0UWtr4xemqSJbRs721SLyA-pPwFEpa6-n23sCXu9uX2YP8fzp_nF2M48VTWkXFzoEVFQylRdkkymEpOScEJ5nDOeaFynLwvQ6ozkpEww1IqzIYVHmvMzJBFwPum2fr3ShdNM5WYvWmZV0H8JKI35XGrMQlX0XScIgTVkQuNgKOPvWa9-JlfFK17VstO29wDghBPEk4QE9_4Mube-asF6gOM5SkqY0UHiglLPeO13uhkFQbGwRgy0i2CK-bBHr0HS2v8au5duEAJAB8KHUVNr9_P2P7Cd45Jn8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2292873774</pqid></control><display><type>article</type><title>Surface plastic flow in polishing of rough surfaces</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Iquebal, Ashif S. ; Sagapuram, Dinakar ; Bukkapatnam, Satish T. S.</creator><creatorcontrib>Iquebal, Ashif S. ; Sagapuram, Dinakar ; Bukkapatnam, Satish T. S.</creatorcontrib><description>We present experimental evidence for a new mechanism for how smooth surfaces emerge during repetitive sliding contacts, as in polishing. Electron microscopy observations of Ti-6Al-4V surface with a spherical asperity structure—realized via additive manufacturing—during successive polishing stages suggest that asperity-abrasive contacts exhibit viscous behavior, where the asperity material flows in the form of thin (1–10
μ
m) fluid-like layers. Subsequent bridging of these layers among neighboring asperities results in progressive surface smoothening. Using analytical asperity-abrasive contact temperature modeling and microstructural characterization, we show that the sliding contacts encounter flash temperatures of the order of 700–900 K which is in the range of the dynamic recrystallization temperature of the material considered, thus supporting the experimental observations. Besides providing a new perspective on the long-held mechanism of polishing, our observations provide a novel approach based on graph theory to quantitatively characterize the evolution of surface morphology. Results suggest that the graph representation offers a more efficient measure to characterize the surface morphology emerging at various stages of polishing. The research findings and observations are of broad relevance to the understanding of plastic flow behavior of sliding contacts ubiquitous in materials processing, tribology, and natural geological processes as well as present unique opportunities to tailor the microstructures by controlling the thermomechanics of the asperity-abrasive contacts.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-46997-w</identifier><identifier>PMID: 31337808</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/119/544 ; Electron microscopy ; Graph representations ; Humanities and Social Sciences ; Morphology ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.10617-11, Article 10617</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-deded0c4a5cbd3dedec11aa99339b852be9d758469e84b3f620e135db0dfb9fb3</citedby><cites>FETCH-LOGICAL-c474t-deded0c4a5cbd3dedec11aa99339b852be9d758469e84b3f620e135db0dfb9fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650475/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650475/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31337808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iquebal, Ashif S.</creatorcontrib><creatorcontrib>Sagapuram, Dinakar</creatorcontrib><creatorcontrib>Bukkapatnam, Satish T. S.</creatorcontrib><title>Surface plastic flow in polishing of rough surfaces</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We present experimental evidence for a new mechanism for how smooth surfaces emerge during repetitive sliding contacts, as in polishing. Electron microscopy observations of Ti-6Al-4V surface with a spherical asperity structure—realized via additive manufacturing—during successive polishing stages suggest that asperity-abrasive contacts exhibit viscous behavior, where the asperity material flows in the form of thin (1–10
μ
m) fluid-like layers. Subsequent bridging of these layers among neighboring asperities results in progressive surface smoothening. Using analytical asperity-abrasive contact temperature modeling and microstructural characterization, we show that the sliding contacts encounter flash temperatures of the order of 700–900 K which is in the range of the dynamic recrystallization temperature of the material considered, thus supporting the experimental observations. Besides providing a new perspective on the long-held mechanism of polishing, our observations provide a novel approach based on graph theory to quantitatively characterize the evolution of surface morphology. Results suggest that the graph representation offers a more efficient measure to characterize the surface morphology emerging at various stages of polishing. The research findings and observations are of broad relevance to the understanding of plastic flow behavior of sliding contacts ubiquitous in materials processing, tribology, and natural geological processes as well as present unique opportunities to tailor the microstructures by controlling the thermomechanics of the asperity-abrasive contacts.</description><subject>639/166/988</subject><subject>639/301/119/544</subject><subject>Electron microscopy</subject><subject>Graph representations</subject><subject>Humanities and Social Sciences</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kT1PwzAQhi0EolXpH2BAkVhYAv5M4gUJVXxJlRiA2XIcJ3WVxsFOqPj3uKSUwoBvsE_33Os7vQCcIniJIMmuPEWMZzFEPKYJ52m8PgBjDCmLMcH4cO89AlPvlzAchjlF_BiMCCIkzWA2BuS5d6VUOmpr6TujorK268g0UWtr4xemqSJbRs721SLyA-pPwFEpa6-n23sCXu9uX2YP8fzp_nF2M48VTWkXFzoEVFQylRdkkymEpOScEJ5nDOeaFynLwvQ6ozkpEww1IqzIYVHmvMzJBFwPum2fr3ShdNM5WYvWmZV0H8JKI35XGrMQlX0XScIgTVkQuNgKOPvWa9-JlfFK17VstO29wDghBPEk4QE9_4Mube-asF6gOM5SkqY0UHiglLPeO13uhkFQbGwRgy0i2CK-bBHr0HS2v8au5duEAJAB8KHUVNr9_P2P7Cd45Jn8</recordid><startdate>20190723</startdate><enddate>20190723</enddate><creator>Iquebal, Ashif S.</creator><creator>Sagapuram, Dinakar</creator><creator>Bukkapatnam, Satish T. S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190723</creationdate><title>Surface plastic flow in polishing of rough surfaces</title><author>Iquebal, Ashif S. ; Sagapuram, Dinakar ; Bukkapatnam, Satish T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-deded0c4a5cbd3dedec11aa99339b852be9d758469e84b3f620e135db0dfb9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/166/988</topic><topic>639/301/119/544</topic><topic>Electron microscopy</topic><topic>Graph representations</topic><topic>Humanities and Social Sciences</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iquebal, Ashif S.</creatorcontrib><creatorcontrib>Sagapuram, Dinakar</creatorcontrib><creatorcontrib>Bukkapatnam, Satish T. S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iquebal, Ashif S.</au><au>Sagapuram, Dinakar</au><au>Bukkapatnam, Satish T. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface plastic flow in polishing of rough surfaces</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-07-23</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>10617</spage><epage>11</epage><pages>10617-11</pages><artnum>10617</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We present experimental evidence for a new mechanism for how smooth surfaces emerge during repetitive sliding contacts, as in polishing. Electron microscopy observations of Ti-6Al-4V surface with a spherical asperity structure—realized via additive manufacturing—during successive polishing stages suggest that asperity-abrasive contacts exhibit viscous behavior, where the asperity material flows in the form of thin (1–10
μ
m) fluid-like layers. Subsequent bridging of these layers among neighboring asperities results in progressive surface smoothening. Using analytical asperity-abrasive contact temperature modeling and microstructural characterization, we show that the sliding contacts encounter flash temperatures of the order of 700–900 K which is in the range of the dynamic recrystallization temperature of the material considered, thus supporting the experimental observations. Besides providing a new perspective on the long-held mechanism of polishing, our observations provide a novel approach based on graph theory to quantitatively characterize the evolution of surface morphology. Results suggest that the graph representation offers a more efficient measure to characterize the surface morphology emerging at various stages of polishing. The research findings and observations are of broad relevance to the understanding of plastic flow behavior of sliding contacts ubiquitous in materials processing, tribology, and natural geological processes as well as present unique opportunities to tailor the microstructures by controlling the thermomechanics of the asperity-abrasive contacts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31337808</pmid><doi>10.1038/s41598-019-46997-w</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-07, Vol.9 (1), p.10617-11, Article 10617 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6650475 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/166/988 639/301/119/544 Electron microscopy Graph representations Humanities and Social Sciences Morphology multidisciplinary Science Science (multidisciplinary) |
title | Surface plastic flow in polishing of rough surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20plastic%20flow%20in%20polishing%20of%20rough%20surfaces&rft.jtitle=Scientific%20reports&rft.au=Iquebal,%20Ashif%20S.&rft.date=2019-07-23&rft.volume=9&rft.issue=1&rft.spage=10617&rft.epage=11&rft.pages=10617-11&rft.artnum=10617&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-46997-w&rft_dat=%3Cproquest_pubme%3E2292873774%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2292873774&rft_id=info:pmid/31337808&rfr_iscdi=true |