Achieving excellent microformability in aluminum by engineering a unique ultrafine-grained microstructure
During microforming of conventional materials, specimen and microstructural length-scales are close to each other. This leads to an abnormal deformation behavior of the material and reduces microformability. Engineering ultrafine-grained (UFG) microstructure in the material is a possible solution. H...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-07, Vol.9 (1), p.10683-12, Article 10683 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 10683 |
container_title | Scientific reports |
container_volume | 9 |
creator | Dhal, A. Panigrahi, S. K. Shunmugam, M. S. |
description | During microforming of conventional materials, specimen and microstructural length-scales are close to each other. This leads to an abnormal deformation behavior of the material and reduces microformability. Engineering ultrafine-grained (UFG) microstructure in the material is a possible solution. However, micro-scale deformation behavior of UFG material is not fully understood. Present work attempts to comprehensively investigate the micro-scale deformation of four distinctly engineered microstructures: UFG with residual dislocations and elongated grains, UFG free of residual dislocation with equiaxed grains, bimodal-grained and coarse-grained. The deformation behavior is captured via micro-scale uniaxial tensile test and micro-deep drawing operation. Micro-cups generated from UFG material with equiaxed grains show excellent surface quality, form-accuracy and minimal process scatter. Postmortem microscopy of the formed micro-cups attributes this improved microformability to the activation of grain boundary-mediated plasticity in the material which results in synergetic grain migration and rotation. Presence of residual dislocations and elongated grains hinders the grain migration and rotation leading to strain localization and thinning. In case of bimodal and coarse-grained material, cross-slip based deformation mode progressively dominates over grain migration and rotation, which results in a reduction in microformability due to the influence of size-effect. |
doi_str_mv | 10.1038/s41598-019-46957-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6650420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284580879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-15d927b0b4e2e075ec7bccb0aba75290da72d342eb6c1a9e0a6aa7e60c5227b03</originalsourceid><addsrcrecordid>eNp9UU1v1TAQtBCIVqV_gAOKxIVLwJ-xc0GqKr6kSlzgbK2dfa-uEudhxxXv39chpRQO-LKWPTO7s0PIS0bfMirMuyyZ6k1LWd_Krle6lU_IKadStVxw_vTR_YSc53xD61G8l6x_Tk4EE0Ibxk5JuPDXAW9D3Df40-M4YlyaKfg07-Y0gQtjWI5NiA2MZQqxTI07Nhj3ISKmlQVNieFHwaaMS4JdfW_3CWoZNpm8pOKXkvAFebaDMeP5fT0j3z9--Hb5ub36-unL5cVV66WWS8vU0HPtqJPIkWqFXjvvHQUHus5PB9B8EJKj6zyDHil0ABo76hVfeeKMvN90D8VNOPhqKMFoDylMkI52hmD__onh2u7nW9t1ikq-Cry5F0hzNZYXO4W8rgYiziVbzjshmDGdqdDX_0Bv5pJitVdRRipDje4rim-odR054e5hGEbtGqbdwrQ1TPsrTCsr6dVjGw-U39FVgNgA-bAGgelP7__I3gEmJ63W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284580879</pqid></control><display><type>article</type><title>Achieving excellent microformability in aluminum by engineering a unique ultrafine-grained microstructure</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dhal, A. ; Panigrahi, S. K. ; Shunmugam, M. S.</creator><creatorcontrib>Dhal, A. ; Panigrahi, S. K. ; Shunmugam, M. S.</creatorcontrib><description>During microforming of conventional materials, specimen and microstructural length-scales are close to each other. This leads to an abnormal deformation behavior of the material and reduces microformability. Engineering ultrafine-grained (UFG) microstructure in the material is a possible solution. However, micro-scale deformation behavior of UFG material is not fully understood. Present work attempts to comprehensively investigate the micro-scale deformation of four distinctly engineered microstructures: UFG with residual dislocations and elongated grains, UFG free of residual dislocation with equiaxed grains, bimodal-grained and coarse-grained. The deformation behavior is captured via micro-scale uniaxial tensile test and micro-deep drawing operation. Micro-cups generated from UFG material with equiaxed grains show excellent surface quality, form-accuracy and minimal process scatter. Postmortem microscopy of the formed micro-cups attributes this improved microformability to the activation of grain boundary-mediated plasticity in the material which results in synergetic grain migration and rotation. Presence of residual dislocations and elongated grains hinders the grain migration and rotation leading to strain localization and thinning. In case of bimodal and coarse-grained material, cross-slip based deformation mode progressively dominates over grain migration and rotation, which results in a reduction in microformability due to the influence of size-effect.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-46957-4</identifier><identifier>PMID: 31337811</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/357 ; Aluminum ; Deformation ; Dislocation ; Ductility ; Engineering ; Grain boundaries ; Grain size ; Humanities and Social Sciences ; Investigations ; Localization ; Manufacturing ; Microstructure ; Morphology ; multidisciplinary ; Nanostructured materials ; Productivity ; Science ; Science (multidisciplinary) ; Strain hardening ; Yield stress</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.10683-12, Article 10683</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-15d927b0b4e2e075ec7bccb0aba75290da72d342eb6c1a9e0a6aa7e60c5227b03</citedby><cites>FETCH-LOGICAL-c474t-15d927b0b4e2e075ec7bccb0aba75290da72d342eb6c1a9e0a6aa7e60c5227b03</cites><orcidid>0000-0001-9401-649X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650420/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650420/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31337811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhal, A.</creatorcontrib><creatorcontrib>Panigrahi, S. K.</creatorcontrib><creatorcontrib>Shunmugam, M. S.</creatorcontrib><title>Achieving excellent microformability in aluminum by engineering a unique ultrafine-grained microstructure</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>During microforming of conventional materials, specimen and microstructural length-scales are close to each other. This leads to an abnormal deformation behavior of the material and reduces microformability. Engineering ultrafine-grained (UFG) microstructure in the material is a possible solution. However, micro-scale deformation behavior of UFG material is not fully understood. Present work attempts to comprehensively investigate the micro-scale deformation of four distinctly engineered microstructures: UFG with residual dislocations and elongated grains, UFG free of residual dislocation with equiaxed grains, bimodal-grained and coarse-grained. The deformation behavior is captured via micro-scale uniaxial tensile test and micro-deep drawing operation. Micro-cups generated from UFG material with equiaxed grains show excellent surface quality, form-accuracy and minimal process scatter. Postmortem microscopy of the formed micro-cups attributes this improved microformability to the activation of grain boundary-mediated plasticity in the material which results in synergetic grain migration and rotation. Presence of residual dislocations and elongated grains hinders the grain migration and rotation leading to strain localization and thinning. In case of bimodal and coarse-grained material, cross-slip based deformation mode progressively dominates over grain migration and rotation, which results in a reduction in microformability due to the influence of size-effect.</description><subject>639/166/988</subject><subject>639/301/357</subject><subject>Aluminum</subject><subject>Deformation</subject><subject>Dislocation</subject><subject>Ductility</subject><subject>Engineering</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Humanities and Social Sciences</subject><subject>Investigations</subject><subject>Localization</subject><subject>Manufacturing</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Nanostructured materials</subject><subject>Productivity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Strain hardening</subject><subject>Yield stress</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1v1TAQtBCIVqV_gAOKxIVLwJ-xc0GqKr6kSlzgbK2dfa-uEudhxxXv39chpRQO-LKWPTO7s0PIS0bfMirMuyyZ6k1LWd_Krle6lU_IKadStVxw_vTR_YSc53xD61G8l6x_Tk4EE0Ibxk5JuPDXAW9D3Df40-M4YlyaKfg07-Y0gQtjWI5NiA2MZQqxTI07Nhj3ISKmlQVNieFHwaaMS4JdfW_3CWoZNpm8pOKXkvAFebaDMeP5fT0j3z9--Hb5ub36-unL5cVV66WWS8vU0HPtqJPIkWqFXjvvHQUHus5PB9B8EJKj6zyDHil0ABo76hVfeeKMvN90D8VNOPhqKMFoDylMkI52hmD__onh2u7nW9t1ikq-Cry5F0hzNZYXO4W8rgYiziVbzjshmDGdqdDX_0Bv5pJitVdRRipDje4rim-odR054e5hGEbtGqbdwrQ1TPsrTCsr6dVjGw-U39FVgNgA-bAGgelP7__I3gEmJ63W</recordid><startdate>20190723</startdate><enddate>20190723</enddate><creator>Dhal, A.</creator><creator>Panigrahi, S. K.</creator><creator>Shunmugam, M. S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9401-649X</orcidid></search><sort><creationdate>20190723</creationdate><title>Achieving excellent microformability in aluminum by engineering a unique ultrafine-grained microstructure</title><author>Dhal, A. ; Panigrahi, S. K. ; Shunmugam, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-15d927b0b4e2e075ec7bccb0aba75290da72d342eb6c1a9e0a6aa7e60c5227b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/166/988</topic><topic>639/301/357</topic><topic>Aluminum</topic><topic>Deformation</topic><topic>Dislocation</topic><topic>Ductility</topic><topic>Engineering</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Humanities and Social Sciences</topic><topic>Investigations</topic><topic>Localization</topic><topic>Manufacturing</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Nanostructured materials</topic><topic>Productivity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Strain hardening</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhal, A.</creatorcontrib><creatorcontrib>Panigrahi, S. K.</creatorcontrib><creatorcontrib>Shunmugam, M. S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhal, A.</au><au>Panigrahi, S. K.</au><au>Shunmugam, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving excellent microformability in aluminum by engineering a unique ultrafine-grained microstructure</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-07-23</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>10683</spage><epage>12</epage><pages>10683-12</pages><artnum>10683</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>During microforming of conventional materials, specimen and microstructural length-scales are close to each other. This leads to an abnormal deformation behavior of the material and reduces microformability. Engineering ultrafine-grained (UFG) microstructure in the material is a possible solution. However, micro-scale deformation behavior of UFG material is not fully understood. Present work attempts to comprehensively investigate the micro-scale deformation of four distinctly engineered microstructures: UFG with residual dislocations and elongated grains, UFG free of residual dislocation with equiaxed grains, bimodal-grained and coarse-grained. The deformation behavior is captured via micro-scale uniaxial tensile test and micro-deep drawing operation. Micro-cups generated from UFG material with equiaxed grains show excellent surface quality, form-accuracy and minimal process scatter. Postmortem microscopy of the formed micro-cups attributes this improved microformability to the activation of grain boundary-mediated plasticity in the material which results in synergetic grain migration and rotation. Presence of residual dislocations and elongated grains hinders the grain migration and rotation leading to strain localization and thinning. In case of bimodal and coarse-grained material, cross-slip based deformation mode progressively dominates over grain migration and rotation, which results in a reduction in microformability due to the influence of size-effect.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31337811</pmid><doi>10.1038/s41598-019-46957-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9401-649X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-07, Vol.9 (1), p.10683-12, Article 10683 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6650420 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 639/166/988 639/301/357 Aluminum Deformation Dislocation Ductility Engineering Grain boundaries Grain size Humanities and Social Sciences Investigations Localization Manufacturing Microstructure Morphology multidisciplinary Nanostructured materials Productivity Science Science (multidisciplinary) Strain hardening Yield stress |
title | Achieving excellent microformability in aluminum by engineering a unique ultrafine-grained microstructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20excellent%20microformability%20in%20aluminum%20by%20engineering%20a%20unique%20ultrafine-grained%20microstructure&rft.jtitle=Scientific%20reports&rft.au=Dhal,%20A.&rft.date=2019-07-23&rft.volume=9&rft.issue=1&rft.spage=10683&rft.epage=12&rft.pages=10683-12&rft.artnum=10683&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-46957-4&rft_dat=%3Cproquest_pubme%3E2284580879%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284580879&rft_id=info:pmid/31337811&rfr_iscdi=true |