Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME

Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the ∼80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2019-07, Vol.47 (13), p.6984-7002
Hauptverfasser: Rössler, Ingrid, Embacher, Julia, Pillet, Benjamin, Murat, Guillaume, Liesinger, Laura, Hafner, Jutta, Unterluggauer, Julia Judith, Birner-Gruenberger, Ruth, Kressler, Dieter, Pertschy, Brigitte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7002
container_issue 13
container_start_page 6984
container_title Nucleic acids research
container_volume 47
creator Rössler, Ingrid
Embacher, Julia
Pillet, Benjamin
Murat, Guillaume
Liesinger, Laura
Hafner, Jutta
Unterluggauer, Julia Judith
Birner-Gruenberger, Ruth
Kressler, Dieter
Pertschy, Brigitte
description Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the ∼80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein chaperones, we performed a tandem-affinity purification based screen and looked for factors co-enriched with individual small subunit r-proteins. We report the identification of Nap1 and Tsr4 as direct binding partners of Rps6 and Rps2, respectively. Both factors promote the solubility of their r-protein clients in vitro. While Tsr4 is specific for Rps2, Nap1 has several interaction partners including Rps6 and two other r-proteins. Tsr4 binds co-translationally to the essential, eukaryote-specific N-terminal extension of Rps2, whereas Nap1 interacts with a large, mostly eukaryote-specific binding surface of Rps6. Mutation of the essential Tsr4 and deletion of the non-essential Nap1 both enhance the 40S synthesis defects of the corresponding r-protein mutants. Our findings highlight that the acquisition of eukaryote-specific domains in r-proteins was accompanied by the co-evolution of proteins specialized to protect these domains and emphasize the critical role of r-protein chaperones for the synthesis of eukaryotic ribosomes.
doi_str_mv 10.1093/nar/gkz317
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6648895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232133359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-d855922bfc4e6eeb73b1da5abeec7d6db6dbb198b6385684d1b2297d131ff6fc3</originalsourceid><addsrcrecordid>eNpVkMtKw0AUhgdRbL1sfACZpYixc0kmyUaQUi9Q7aauh7mctNEkE2fSij69kdaicOBfnI__HD6Ezii5piTno0b50eLti9N0Dw0pFyyKc8H20ZBwkkSUxNkAHYXwSgiNaRIfogGnRDDC2BCN58HHWDUWP6uWXuHuw-HGraHCNdQafMCuwN0SsC-1C65WFW6966BssFmqFvzsaXKCDgpVBTjd5jF6uZvMxw_RdHb_OL6dRoanWRfZLElyxnRhYhAAOuWaWpUoDWBSK6zuR9M804JnichiSzVjeWopp0UhCsOP0c2mt13pGqyBpvOqkq0va-U_pVOl_L9pyqVcuLUUIs6yPOkLLrYF3r2vIHSyLoOBqlINuFWQjHFGOedJ3qOXG9R4F4KHYneGEvljXfbW5cZ6D5__fWyH_mrm37v6f5E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232133359</pqid></control><display><type>article</type><title>Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rössler, Ingrid ; Embacher, Julia ; Pillet, Benjamin ; Murat, Guillaume ; Liesinger, Laura ; Hafner, Jutta ; Unterluggauer, Julia Judith ; Birner-Gruenberger, Ruth ; Kressler, Dieter ; Pertschy, Brigitte</creator><creatorcontrib>Rössler, Ingrid ; Embacher, Julia ; Pillet, Benjamin ; Murat, Guillaume ; Liesinger, Laura ; Hafner, Jutta ; Unterluggauer, Julia Judith ; Birner-Gruenberger, Ruth ; Kressler, Dieter ; Pertschy, Brigitte</creatorcontrib><description>Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the ∼80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein chaperones, we performed a tandem-affinity purification based screen and looked for factors co-enriched with individual small subunit r-proteins. We report the identification of Nap1 and Tsr4 as direct binding partners of Rps6 and Rps2, respectively. Both factors promote the solubility of their r-protein clients in vitro. While Tsr4 is specific for Rps2, Nap1 has several interaction partners including Rps6 and two other r-proteins. Tsr4 binds co-translationally to the essential, eukaryote-specific N-terminal extension of Rps2, whereas Nap1 interacts with a large, mostly eukaryote-specific binding surface of Rps6. Mutation of the essential Tsr4 and deletion of the non-essential Nap1 both enhance the 40S synthesis defects of the corresponding r-protein mutants. Our findings highlight that the acquisition of eukaryote-specific domains in r-proteins was accompanied by the co-evolution of proteins specialized to protect these domains and emphasize the critical role of r-protein chaperones for the synthesis of eukaryotic ribosomes.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz317</identifier><identifier>PMID: 31062022</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Models, Molecular ; Molecular Chaperones - isolation &amp; purification ; Molecular Chaperones - pharmacology ; Molecular Chaperones - physiology ; Nucleosome Assembly Protein 1 - physiology ; Organelle Biogenesis ; Protein Binding ; Protein Biosynthesis ; Protein Conformation ; Protein Domains ; Protein Interaction Mapping ; Recombinant Fusion Proteins - metabolism ; Ribosomal Proteins - metabolism ; Ribosomes - metabolism ; RNA and RNA-protein complexes ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - isolation &amp; purification ; Saccharomyces cerevisiae Proteins - pharmacology ; Saccharomyces cerevisiae Proteins - physiology ; Sequence Alignment ; Sequence Homology, Amino Acid</subject><ispartof>Nucleic acids research, 2019-07, Vol.47 (13), p.6984-7002</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-d855922bfc4e6eeb73b1da5abeec7d6db6dbb198b6385684d1b2297d131ff6fc3</citedby><cites>FETCH-LOGICAL-c378t-d855922bfc4e6eeb73b1da5abeec7d6db6dbb198b6385684d1b2297d131ff6fc3</cites><orcidid>0000-0003-3558-0191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648895/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648895/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31062022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rössler, Ingrid</creatorcontrib><creatorcontrib>Embacher, Julia</creatorcontrib><creatorcontrib>Pillet, Benjamin</creatorcontrib><creatorcontrib>Murat, Guillaume</creatorcontrib><creatorcontrib>Liesinger, Laura</creatorcontrib><creatorcontrib>Hafner, Jutta</creatorcontrib><creatorcontrib>Unterluggauer, Julia Judith</creatorcontrib><creatorcontrib>Birner-Gruenberger, Ruth</creatorcontrib><creatorcontrib>Kressler, Dieter</creatorcontrib><creatorcontrib>Pertschy, Brigitte</creatorcontrib><title>Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the ∼80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein chaperones, we performed a tandem-affinity purification based screen and looked for factors co-enriched with individual small subunit r-proteins. We report the identification of Nap1 and Tsr4 as direct binding partners of Rps6 and Rps2, respectively. Both factors promote the solubility of their r-protein clients in vitro. While Tsr4 is specific for Rps2, Nap1 has several interaction partners including Rps6 and two other r-proteins. Tsr4 binds co-translationally to the essential, eukaryote-specific N-terminal extension of Rps2, whereas Nap1 interacts with a large, mostly eukaryote-specific binding surface of Rps6. Mutation of the essential Tsr4 and deletion of the non-essential Nap1 both enhance the 40S synthesis defects of the corresponding r-protein mutants. Our findings highlight that the acquisition of eukaryote-specific domains in r-proteins was accompanied by the co-evolution of proteins specialized to protect these domains and emphasize the critical role of r-protein chaperones for the synthesis of eukaryotic ribosomes.</description><subject>Amino Acid Sequence</subject><subject>Models, Molecular</subject><subject>Molecular Chaperones - isolation &amp; purification</subject><subject>Molecular Chaperones - pharmacology</subject><subject>Molecular Chaperones - physiology</subject><subject>Nucleosome Assembly Protein 1 - physiology</subject><subject>Organelle Biogenesis</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Protein Interaction Mapping</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Ribosomal Proteins - metabolism</subject><subject>Ribosomes - metabolism</subject><subject>RNA and RNA-protein complexes</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - isolation &amp; purification</subject><subject>Saccharomyces cerevisiae Proteins - pharmacology</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtKw0AUhgdRbL1sfACZpYixc0kmyUaQUi9Q7aauh7mctNEkE2fSij69kdaicOBfnI__HD6Ezii5piTno0b50eLti9N0Dw0pFyyKc8H20ZBwkkSUxNkAHYXwSgiNaRIfogGnRDDC2BCN58HHWDUWP6uWXuHuw-HGraHCNdQafMCuwN0SsC-1C65WFW6966BssFmqFvzsaXKCDgpVBTjd5jF6uZvMxw_RdHb_OL6dRoanWRfZLElyxnRhYhAAOuWaWpUoDWBSK6zuR9M804JnichiSzVjeWopp0UhCsOP0c2mt13pGqyBpvOqkq0va-U_pVOl_L9pyqVcuLUUIs6yPOkLLrYF3r2vIHSyLoOBqlINuFWQjHFGOedJ3qOXG9R4F4KHYneGEvljXfbW5cZ6D5__fWyH_mrm37v6f5E</recordid><startdate>20190726</startdate><enddate>20190726</enddate><creator>Rössler, Ingrid</creator><creator>Embacher, Julia</creator><creator>Pillet, Benjamin</creator><creator>Murat, Guillaume</creator><creator>Liesinger, Laura</creator><creator>Hafner, Jutta</creator><creator>Unterluggauer, Julia Judith</creator><creator>Birner-Gruenberger, Ruth</creator><creator>Kressler, Dieter</creator><creator>Pertschy, Brigitte</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3558-0191</orcidid></search><sort><creationdate>20190726</creationdate><title>Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME</title><author>Rössler, Ingrid ; Embacher, Julia ; Pillet, Benjamin ; Murat, Guillaume ; Liesinger, Laura ; Hafner, Jutta ; Unterluggauer, Julia Judith ; Birner-Gruenberger, Ruth ; Kressler, Dieter ; Pertschy, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-d855922bfc4e6eeb73b1da5abeec7d6db6dbb198b6385684d1b2297d131ff6fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acid Sequence</topic><topic>Models, Molecular</topic><topic>Molecular Chaperones - isolation &amp; purification</topic><topic>Molecular Chaperones - pharmacology</topic><topic>Molecular Chaperones - physiology</topic><topic>Nucleosome Assembly Protein 1 - physiology</topic><topic>Organelle Biogenesis</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Protein Interaction Mapping</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Ribosomal Proteins - metabolism</topic><topic>Ribosomes - metabolism</topic><topic>RNA and RNA-protein complexes</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - isolation &amp; purification</topic><topic>Saccharomyces cerevisiae Proteins - pharmacology</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rössler, Ingrid</creatorcontrib><creatorcontrib>Embacher, Julia</creatorcontrib><creatorcontrib>Pillet, Benjamin</creatorcontrib><creatorcontrib>Murat, Guillaume</creatorcontrib><creatorcontrib>Liesinger, Laura</creatorcontrib><creatorcontrib>Hafner, Jutta</creatorcontrib><creatorcontrib>Unterluggauer, Julia Judith</creatorcontrib><creatorcontrib>Birner-Gruenberger, Ruth</creatorcontrib><creatorcontrib>Kressler, Dieter</creatorcontrib><creatorcontrib>Pertschy, Brigitte</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rössler, Ingrid</au><au>Embacher, Julia</au><au>Pillet, Benjamin</au><au>Murat, Guillaume</au><au>Liesinger, Laura</au><au>Hafner, Jutta</au><au>Unterluggauer, Julia Judith</au><au>Birner-Gruenberger, Ruth</au><au>Kressler, Dieter</au><au>Pertschy, Brigitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-07-26</date><risdate>2019</risdate><volume>47</volume><issue>13</issue><spage>6984</spage><epage>7002</epage><pages>6984-7002</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the ∼80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein chaperones, we performed a tandem-affinity purification based screen and looked for factors co-enriched with individual small subunit r-proteins. We report the identification of Nap1 and Tsr4 as direct binding partners of Rps6 and Rps2, respectively. Both factors promote the solubility of their r-protein clients in vitro. While Tsr4 is specific for Rps2, Nap1 has several interaction partners including Rps6 and two other r-proteins. Tsr4 binds co-translationally to the essential, eukaryote-specific N-terminal extension of Rps2, whereas Nap1 interacts with a large, mostly eukaryote-specific binding surface of Rps6. Mutation of the essential Tsr4 and deletion of the non-essential Nap1 both enhance the 40S synthesis defects of the corresponding r-protein mutants. Our findings highlight that the acquisition of eukaryote-specific domains in r-proteins was accompanied by the co-evolution of proteins specialized to protect these domains and emphasize the critical role of r-protein chaperones for the synthesis of eukaryotic ribosomes.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31062022</pmid><doi>10.1093/nar/gkz317</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3558-0191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2019-07, Vol.47 (13), p.6984-7002
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6648895
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Models, Molecular
Molecular Chaperones - isolation & purification
Molecular Chaperones - pharmacology
Molecular Chaperones - physiology
Nucleosome Assembly Protein 1 - physiology
Organelle Biogenesis
Protein Binding
Protein Biosynthesis
Protein Conformation
Protein Domains
Protein Interaction Mapping
Recombinant Fusion Proteins - metabolism
Ribosomal Proteins - metabolism
Ribosomes - metabolism
RNA and RNA-protein complexes
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - isolation & purification
Saccharomyces cerevisiae Proteins - pharmacology
Saccharomyces cerevisiae Proteins - physiology
Sequence Alignment
Sequence Homology, Amino Acid
title Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tsr4%20and%20Nap1,%20two%20novel%20members%20of%20the%20ribosomal%20protein%20chaperOME&rft.jtitle=Nucleic%20acids%20research&rft.au=R%C3%B6ssler,%20Ingrid&rft.date=2019-07-26&rft.volume=47&rft.issue=13&rft.spage=6984&rft.epage=7002&rft.pages=6984-7002&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz317&rft_dat=%3Cproquest_pubme%3E2232133359%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232133359&rft_id=info:pmid/31062022&rfr_iscdi=true