The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model

In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical biology 2019-07, Vol.79 (2), p.509-532
Hauptverfasser: Yamakou, Marius E., Tran, Tat Dat, Duc, Luu Hoang, Jost, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue 2
container_start_page 509
container_title Journal of mathematical biology
container_volume 79
creator Yamakou, Marius E.
Tran, Tat Dat
Duc, Luu Hoang
Jost, Jürgen
description In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific types of noises, we prove that there exists a global random attractor for the stochastic FHN system. The linearization method is then applied to estimate the firing time and to derive the associated radial equation representing a LIF equation. This result confirms the previous prediction in Ditlevsen and Greenwood (J Math Biol 67(2):239–259, 2013 ) for the Morris-Lecar neuron model in the bistability regime consisting of a stable fixed point and a stable limit cycle.
doi_str_mv 10.1007/s00285-019-01366-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6647150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2218683572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-95f8ce33b999953ac04fe1b1da391f34118ee4d4f4ba54122d2af4a01746820d3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS1ERS-FF2CBLLFhE-qxHSfZIKGKAlJVNmVtOc4kcUniYjuI3hXvwBvyJLiklJ8Flq2RPN859ugQ8gTYC2CsOo6M8bosGDT5CKWK_T2yAyl4ARLUfbJjgolC1cAPycMYLxmDqmzgATkUwGSjFN-R-WJEGpO3o4nJWXrq0n5ch_H712_nZlhnTxdcg1_o7DucqFtoygL8Yl0y7YQ04ODmfDG32EVq6ITm43XGEg7BJCzM0hW9C7jpH5GD3kwRH9_WI_Lh9PXFydvi7P2bdyevzgorK5mKpuxri0K0TV6lMJbJHqGFzogGeiEBakTZyV62ppTAecdNL00eT6qas04ckZeb79XazthZXFIwk74KbjbhWnvj9N-dxY168J-1UrKCkmWD57cGwX9aMSY9u2hxmsyCfo2ac97kncmMPvsHvfRrWPJ4mYJa1aKseKb4RtngYwzY330GmL5JU29p6pym_pmm3mfR0z_HuJP8ii8DYgNibi0Dht9v_8f2BzKdrZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218683572</pqid></control><display><type>article</type><title>The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model</title><source>SpringerNature Journals</source><creator>Yamakou, Marius E. ; Tran, Tat Dat ; Duc, Luu Hoang ; Jost, Jürgen</creator><creatorcontrib>Yamakou, Marius E. ; Tran, Tat Dat ; Duc, Luu Hoang ; Jost, Jürgen</creatorcontrib><description>In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific types of noises, we prove that there exists a global random attractor for the stochastic FHN system. The linearization method is then applied to estimate the firing time and to derive the associated radial equation representing a LIF equation. This result confirms the previous prediction in Ditlevsen and Greenwood (J Math Biol 67(2):239–259, 2013 ) for the Morris-Lecar neuron model in the bistability regime consisting of a stable fixed point and a stable limit cycle.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-019-01366-z</identifier><identifier>PMID: 31049662</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Bistability ; Burning time ; Fixed points (mathematics) ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Mimicry ; Stochasticity</subject><ispartof>Journal of mathematical biology, 2019-07, Vol.79 (2), p.509-532</ispartof><rights>The Author(s) 2019</rights><rights>Journal of Mathematical Biology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-95f8ce33b999953ac04fe1b1da391f34118ee4d4f4ba54122d2af4a01746820d3</citedby><cites>FETCH-LOGICAL-c474t-95f8ce33b999953ac04fe1b1da391f34118ee4d4f4ba54122d2af4a01746820d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-019-01366-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-019-01366-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31049662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamakou, Marius E.</creatorcontrib><creatorcontrib>Tran, Tat Dat</creatorcontrib><creatorcontrib>Duc, Luu Hoang</creatorcontrib><creatorcontrib>Jost, Jürgen</creatorcontrib><title>The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific types of noises, we prove that there exists a global random attractor for the stochastic FHN system. The linearization method is then applied to estimate the firing time and to derive the associated radial equation representing a LIF equation. This result confirms the previous prediction in Ditlevsen and Greenwood (J Math Biol 67(2):239–259, 2013 ) for the Morris-Lecar neuron model in the bistability regime consisting of a stable fixed point and a stable limit cycle.</description><subject>Applications of Mathematics</subject><subject>Bistability</subject><subject>Burning time</subject><subject>Fixed points (mathematics)</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mimicry</subject><subject>Stochasticity</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1TAQhS1ERS-FF2CBLLFhE-qxHSfZIKGKAlJVNmVtOc4kcUniYjuI3hXvwBvyJLiklJ8Flq2RPN859ugQ8gTYC2CsOo6M8bosGDT5CKWK_T2yAyl4ARLUfbJjgolC1cAPycMYLxmDqmzgATkUwGSjFN-R-WJEGpO3o4nJWXrq0n5ch_H712_nZlhnTxdcg1_o7DucqFtoygL8Yl0y7YQ04ODmfDG32EVq6ITm43XGEg7BJCzM0hW9C7jpH5GD3kwRH9_WI_Lh9PXFydvi7P2bdyevzgorK5mKpuxri0K0TV6lMJbJHqGFzogGeiEBakTZyV62ppTAecdNL00eT6qas04ckZeb79XazthZXFIwk74KbjbhWnvj9N-dxY168J-1UrKCkmWD57cGwX9aMSY9u2hxmsyCfo2ac97kncmMPvsHvfRrWPJ4mYJa1aKseKb4RtngYwzY330GmL5JU29p6pym_pmm3mfR0z_HuJP8ii8DYgNibi0Dht9v_8f2BzKdrZA</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Yamakou, Marius E.</creator><creator>Tran, Tat Dat</creator><creator>Duc, Luu Hoang</creator><creator>Jost, Jürgen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190701</creationdate><title>The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model</title><author>Yamakou, Marius E. ; Tran, Tat Dat ; Duc, Luu Hoang ; Jost, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-95f8ce33b999953ac04fe1b1da391f34118ee4d4f4ba54122d2af4a01746820d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Bistability</topic><topic>Burning time</topic><topic>Fixed points (mathematics)</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mimicry</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamakou, Marius E.</creatorcontrib><creatorcontrib>Tran, Tat Dat</creatorcontrib><creatorcontrib>Duc, Luu Hoang</creatorcontrib><creatorcontrib>Jost, Jürgen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamakou, Marius E.</au><au>Tran, Tat Dat</au><au>Duc, Luu Hoang</au><au>Jost, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>79</volume><issue>2</issue><spage>509</spage><epage>532</epage><pages>509-532</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific types of noises, we prove that there exists a global random attractor for the stochastic FHN system. The linearization method is then applied to estimate the firing time and to derive the associated radial equation representing a LIF equation. This result confirms the previous prediction in Ditlevsen and Greenwood (J Math Biol 67(2):239–259, 2013 ) for the Morris-Lecar neuron model in the bistability regime consisting of a stable fixed point and a stable limit cycle.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31049662</pmid><doi>10.1007/s00285-019-01366-z</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2019-07, Vol.79 (2), p.509-532
issn 0303-6812
1432-1416
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6647150
source SpringerNature Journals
subjects Applications of Mathematics
Bistability
Burning time
Fixed points (mathematics)
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Mimicry
Stochasticity
title The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stochastic%20Fitzhugh%E2%80%93Nagumo%20neuron%20model%20in%20the%20excitable%20regime%20embeds%20a%20leaky%20integrate-and-fire%20model&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Yamakou,%20Marius%20E.&rft.date=2019-07-01&rft.volume=79&rft.issue=2&rft.spage=509&rft.epage=532&rft.pages=509-532&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-019-01366-z&rft_dat=%3Cproquest_pubme%3E2218683572%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218683572&rft_id=info:pmid/31049662&rfr_iscdi=true