The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model
In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific t...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2019-07, Vol.79 (2), p.509-532 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 532 |
---|---|
container_issue | 2 |
container_start_page | 509 |
container_title | Journal of mathematical biology |
container_volume | 79 |
creator | Yamakou, Marius E. Tran, Tat Dat Duc, Luu Hoang Jost, Jürgen |
description | In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific types of noises, we prove that there exists a global random attractor for the stochastic FHN system. The linearization method is then applied to estimate the firing time and to derive the associated radial equation representing a LIF equation. This result confirms the previous prediction in Ditlevsen and Greenwood (J Math Biol 67(2):239–259,
2013
) for the Morris-Lecar neuron model in the bistability regime consisting of a stable fixed point and a stable limit cycle. |
doi_str_mv | 10.1007/s00285-019-01366-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6647150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2218683572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-95f8ce33b999953ac04fe1b1da391f34118ee4d4f4ba54122d2af4a01746820d3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS1ERS-FF2CBLLFhE-qxHSfZIKGKAlJVNmVtOc4kcUniYjuI3hXvwBvyJLiklJ8Flq2RPN859ugQ8gTYC2CsOo6M8bosGDT5CKWK_T2yAyl4ARLUfbJjgolC1cAPycMYLxmDqmzgATkUwGSjFN-R-WJEGpO3o4nJWXrq0n5ch_H712_nZlhnTxdcg1_o7DucqFtoygL8Yl0y7YQ04ODmfDG32EVq6ITm43XGEg7BJCzM0hW9C7jpH5GD3kwRH9_WI_Lh9PXFydvi7P2bdyevzgorK5mKpuxri0K0TV6lMJbJHqGFzogGeiEBakTZyV62ppTAecdNL00eT6qas04ckZeb79XazthZXFIwk74KbjbhWnvj9N-dxY168J-1UrKCkmWD57cGwX9aMSY9u2hxmsyCfo2ac97kncmMPvsHvfRrWPJ4mYJa1aKseKb4RtngYwzY330GmL5JU29p6pym_pmm3mfR0z_HuJP8ii8DYgNibi0Dht9v_8f2BzKdrZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218683572</pqid></control><display><type>article</type><title>The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model</title><source>SpringerNature Journals</source><creator>Yamakou, Marius E. ; Tran, Tat Dat ; Duc, Luu Hoang ; Jost, Jürgen</creator><creatorcontrib>Yamakou, Marius E. ; Tran, Tat Dat ; Duc, Luu Hoang ; Jost, Jürgen</creatorcontrib><description>In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific types of noises, we prove that there exists a global random attractor for the stochastic FHN system. The linearization method is then applied to estimate the firing time and to derive the associated radial equation representing a LIF equation. This result confirms the previous prediction in Ditlevsen and Greenwood (J Math Biol 67(2):239–259,
2013
) for the Morris-Lecar neuron model in the bistability regime consisting of a stable fixed point and a stable limit cycle.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-019-01366-z</identifier><identifier>PMID: 31049662</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Bistability ; Burning time ; Fixed points (mathematics) ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Mimicry ; Stochasticity</subject><ispartof>Journal of mathematical biology, 2019-07, Vol.79 (2), p.509-532</ispartof><rights>The Author(s) 2019</rights><rights>Journal of Mathematical Biology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-95f8ce33b999953ac04fe1b1da391f34118ee4d4f4ba54122d2af4a01746820d3</citedby><cites>FETCH-LOGICAL-c474t-95f8ce33b999953ac04fe1b1da391f34118ee4d4f4ba54122d2af4a01746820d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-019-01366-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-019-01366-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31049662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamakou, Marius E.</creatorcontrib><creatorcontrib>Tran, Tat Dat</creatorcontrib><creatorcontrib>Duc, Luu Hoang</creatorcontrib><creatorcontrib>Jost, Jürgen</creatorcontrib><title>The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific types of noises, we prove that there exists a global random attractor for the stochastic FHN system. The linearization method is then applied to estimate the firing time and to derive the associated radial equation representing a LIF equation. This result confirms the previous prediction in Ditlevsen and Greenwood (J Math Biol 67(2):239–259,
2013
) for the Morris-Lecar neuron model in the bistability regime consisting of a stable fixed point and a stable limit cycle.</description><subject>Applications of Mathematics</subject><subject>Bistability</subject><subject>Burning time</subject><subject>Fixed points (mathematics)</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mimicry</subject><subject>Stochasticity</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1TAQhS1ERS-FF2CBLLFhE-qxHSfZIKGKAlJVNmVtOc4kcUniYjuI3hXvwBvyJLiklJ8Flq2RPN859ugQ8gTYC2CsOo6M8bosGDT5CKWK_T2yAyl4ARLUfbJjgolC1cAPycMYLxmDqmzgATkUwGSjFN-R-WJEGpO3o4nJWXrq0n5ch_H712_nZlhnTxdcg1_o7DucqFtoygL8Yl0y7YQ04ODmfDG32EVq6ITm43XGEg7BJCzM0hW9C7jpH5GD3kwRH9_WI_Lh9PXFydvi7P2bdyevzgorK5mKpuxri0K0TV6lMJbJHqGFzogGeiEBakTZyV62ppTAecdNL00eT6qas04ckZeb79XazthZXFIwk74KbjbhWnvj9N-dxY168J-1UrKCkmWD57cGwX9aMSY9u2hxmsyCfo2ac97kncmMPvsHvfRrWPJ4mYJa1aKseKb4RtngYwzY330GmL5JU29p6pym_pmm3mfR0z_HuJP8ii8DYgNibi0Dht9v_8f2BzKdrZA</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Yamakou, Marius E.</creator><creator>Tran, Tat Dat</creator><creator>Duc, Luu Hoang</creator><creator>Jost, Jürgen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190701</creationdate><title>The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model</title><author>Yamakou, Marius E. ; Tran, Tat Dat ; Duc, Luu Hoang ; Jost, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-95f8ce33b999953ac04fe1b1da391f34118ee4d4f4ba54122d2af4a01746820d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Bistability</topic><topic>Burning time</topic><topic>Fixed points (mathematics)</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mimicry</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamakou, Marius E.</creatorcontrib><creatorcontrib>Tran, Tat Dat</creatorcontrib><creatorcontrib>Duc, Luu Hoang</creatorcontrib><creatorcontrib>Jost, Jürgen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamakou, Marius E.</au><au>Tran, Tat Dat</au><au>Duc, Luu Hoang</au><au>Jost, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>79</volume><issue>2</issue><spage>509</spage><epage>532</epage><pages>509-532</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>In this paper, we provide a complete mathematical construction for a stochastic leaky-integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the unique fixed point is stable. Under specific types of noises, we prove that there exists a global random attractor for the stochastic FHN system. The linearization method is then applied to estimate the firing time and to derive the associated radial equation representing a LIF equation. This result confirms the previous prediction in Ditlevsen and Greenwood (J Math Biol 67(2):239–259,
2013
) for the Morris-Lecar neuron model in the bistability regime consisting of a stable fixed point and a stable limit cycle.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31049662</pmid><doi>10.1007/s00285-019-01366-z</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2019-07, Vol.79 (2), p.509-532 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6647150 |
source | SpringerNature Journals |
subjects | Applications of Mathematics Bistability Burning time Fixed points (mathematics) Mathematical and Computational Biology Mathematics Mathematics and Statistics Mimicry Stochasticity |
title | The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stochastic%20Fitzhugh%E2%80%93Nagumo%20neuron%20model%20in%20the%20excitable%20regime%20embeds%20a%20leaky%20integrate-and-fire%20model&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Yamakou,%20Marius%20E.&rft.date=2019-07-01&rft.volume=79&rft.issue=2&rft.spage=509&rft.epage=532&rft.pages=509-532&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-019-01366-z&rft_dat=%3Cproquest_pubme%3E2218683572%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218683572&rft_id=info:pmid/31049662&rfr_iscdi=true |