In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands

[Display omitted] •The genetic code can be altered in vitro using sense codon reprogramming, stop codon suppression, and by breaking degeneracy.•A variety of ncAAs can now be incorporated including D-amino acids, dipeptides, β-amino acids, and α-methyl amino acids.•Use of in vitro translation to int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in chemical biology 2018-10, Vol.46, p.172-179
Hauptverfasser: Richardson, Stacie L, Dods, Kara K, Abrigo, Nicolas A, Iqbal, Emil S, Hartman, Matthew CT
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue
container_start_page 172
container_title Current opinion in chemical biology
container_volume 46
creator Richardson, Stacie L
Dods, Kara K
Abrigo, Nicolas A
Iqbal, Emil S
Hartman, Matthew CT
description [Display omitted] •The genetic code can be altered in vitro using sense codon reprogramming, stop codon suppression, and by breaking degeneracy.•A variety of ncAAs can now be incorporated including D-amino acids, dipeptides, β-amino acids, and α-methyl amino acids.•Use of in vitro translation to introduce ncAAs into proteins enables rapid access to proteins endowed with novel properties.•ncAAs can be paired with orthogonal cyclization strategies to generate macrocyclic peptide libraries of various shapes.•These libraries are useful for the discovery of protease-stable peptide ligands to important drug targets. The ability to introduce non-canonical amino acids into peptides and proteins is facilitated by working within in vitro translation systems. Non-canonical amino acids can be introduced into these systems using sense codon reprogramming, stop codon suppression, and by breaking codon degeneracy. Here, we review how these techniques have been used to create proteins with novel properties and how they facilitate sophisticated studies of protein function. We also discuss how researchers are using in vitro translation experiments with non-canonical amino acids to explore the tolerance of the translation apparatus to artificial building blocks. Finally, we give several examples of how non-canonical amino acids can be combined with mRNA-displayed peptide libraries for the creation of protease-stable, macrocyclic peptide libraries for ligand discovery.
doi_str_mv 10.1016/j.cbpa.2018.07.013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6643963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1367593117302351</els_id><sourcerecordid>2084341077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-43875aae75cbc05ee5262de2358bed2f3254ba58cb8b797a376ece96ba61ffbf3</originalsourceid><addsrcrecordid>eNp9kU2L1TAUhosozof-AReSpZvWfDQfBRFk0HFgwI2uQ5qe1lzapCbpZe6_N-WOg25cJXCe8yTnvFX1huCGYCLeHxrbr6ahmKgGywYT9qy6JEp2NW4xfV7uTMiad4xcVFcpHTDGgir-srpgGEuppLys8p1HR5djQBN4yM4iGwZAEdYYpmiWxfkJGT8geFiNTy54lANKeRtOqCAZnEfj5m3eKzs3uGTDESJajI3BnuxcnCus2RXt7KbCpFfVi9HMCV4_ntfVjy-fv998re-_3d7dfLqvLack1y1TkhsDktveYg7AqaADUMZVDwMdGeVtb7iyveplJw2TAix0ojeCjGM_suvq49m7bv0CgwWfo5n1Gt1i4kkH4_S_Fe9-6ikctRAt6wQrgnePghh-bZCyXsp4MM_GQ9iSpli1rCVlmQWlZ7RMnVKE8ekZgvUelz7oPS69x6Wx1CWu0vT27w8-tfzJpwAfzgCUNR0dRJ2sA29hcBFs1kNw__P_Bv1fqyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084341077</pqid></control><display><type>article</type><title>In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Richardson, Stacie L ; Dods, Kara K ; Abrigo, Nicolas A ; Iqbal, Emil S ; Hartman, Matthew CT</creator><creatorcontrib>Richardson, Stacie L ; Dods, Kara K ; Abrigo, Nicolas A ; Iqbal, Emil S ; Hartman, Matthew CT</creatorcontrib><description>[Display omitted] •The genetic code can be altered in vitro using sense codon reprogramming, stop codon suppression, and by breaking degeneracy.•A variety of ncAAs can now be incorporated including D-amino acids, dipeptides, β-amino acids, and α-methyl amino acids.•Use of in vitro translation to introduce ncAAs into proteins enables rapid access to proteins endowed with novel properties.•ncAAs can be paired with orthogonal cyclization strategies to generate macrocyclic peptide libraries of various shapes.•These libraries are useful for the discovery of protease-stable peptide ligands to important drug targets. The ability to introduce non-canonical amino acids into peptides and proteins is facilitated by working within in vitro translation systems. Non-canonical amino acids can be introduced into these systems using sense codon reprogramming, stop codon suppression, and by breaking codon degeneracy. Here, we review how these techniques have been used to create proteins with novel properties and how they facilitate sophisticated studies of protein function. We also discuss how researchers are using in vitro translation experiments with non-canonical amino acids to explore the tolerance of the translation apparatus to artificial building blocks. Finally, we give several examples of how non-canonical amino acids can be combined with mRNA-displayed peptide libraries for the creation of protease-stable, macrocyclic peptide libraries for ligand discovery.</description><identifier>ISSN: 1367-5931</identifier><identifier>EISSN: 1879-0402</identifier><identifier>DOI: 10.1016/j.cbpa.2018.07.013</identifier><identifier>PMID: 30077877</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><ispartof>Current opinion in chemical biology, 2018-10, Vol.46, p.172-179</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-43875aae75cbc05ee5262de2358bed2f3254ba58cb8b797a376ece96ba61ffbf3</citedby><cites>FETCH-LOGICAL-c521t-43875aae75cbc05ee5262de2358bed2f3254ba58cb8b797a376ece96ba61ffbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cbpa.2018.07.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30077877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richardson, Stacie L</creatorcontrib><creatorcontrib>Dods, Kara K</creatorcontrib><creatorcontrib>Abrigo, Nicolas A</creatorcontrib><creatorcontrib>Iqbal, Emil S</creatorcontrib><creatorcontrib>Hartman, Matthew CT</creatorcontrib><title>In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands</title><title>Current opinion in chemical biology</title><addtitle>Curr Opin Chem Biol</addtitle><description>[Display omitted] •The genetic code can be altered in vitro using sense codon reprogramming, stop codon suppression, and by breaking degeneracy.•A variety of ncAAs can now be incorporated including D-amino acids, dipeptides, β-amino acids, and α-methyl amino acids.•Use of in vitro translation to introduce ncAAs into proteins enables rapid access to proteins endowed with novel properties.•ncAAs can be paired with orthogonal cyclization strategies to generate macrocyclic peptide libraries of various shapes.•These libraries are useful for the discovery of protease-stable peptide ligands to important drug targets. The ability to introduce non-canonical amino acids into peptides and proteins is facilitated by working within in vitro translation systems. Non-canonical amino acids can be introduced into these systems using sense codon reprogramming, stop codon suppression, and by breaking codon degeneracy. Here, we review how these techniques have been used to create proteins with novel properties and how they facilitate sophisticated studies of protein function. We also discuss how researchers are using in vitro translation experiments with non-canonical amino acids to explore the tolerance of the translation apparatus to artificial building blocks. Finally, we give several examples of how non-canonical amino acids can be combined with mRNA-displayed peptide libraries for the creation of protease-stable, macrocyclic peptide libraries for ligand discovery.</description><issn>1367-5931</issn><issn>1879-0402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU2L1TAUhosozof-AReSpZvWfDQfBRFk0HFgwI2uQ5qe1lzapCbpZe6_N-WOg25cJXCe8yTnvFX1huCGYCLeHxrbr6ahmKgGywYT9qy6JEp2NW4xfV7uTMiad4xcVFcpHTDGgir-srpgGEuppLys8p1HR5djQBN4yM4iGwZAEdYYpmiWxfkJGT8geFiNTy54lANKeRtOqCAZnEfj5m3eKzs3uGTDESJajI3BnuxcnCus2RXt7KbCpFfVi9HMCV4_ntfVjy-fv998re-_3d7dfLqvLack1y1TkhsDktveYg7AqaADUMZVDwMdGeVtb7iyveplJw2TAix0ojeCjGM_suvq49m7bv0CgwWfo5n1Gt1i4kkH4_S_Fe9-6ikctRAt6wQrgnePghh-bZCyXsp4MM_GQ9iSpli1rCVlmQWlZ7RMnVKE8ekZgvUelz7oPS69x6Wx1CWu0vT27w8-tfzJpwAfzgCUNR0dRJ2sA29hcBFs1kNw__P_Bv1fqyw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Richardson, Stacie L</creator><creator>Dods, Kara K</creator><creator>Abrigo, Nicolas A</creator><creator>Iqbal, Emil S</creator><creator>Hartman, Matthew CT</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181001</creationdate><title>In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands</title><author>Richardson, Stacie L ; Dods, Kara K ; Abrigo, Nicolas A ; Iqbal, Emil S ; Hartman, Matthew CT</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-43875aae75cbc05ee5262de2358bed2f3254ba58cb8b797a376ece96ba61ffbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Stacie L</creatorcontrib><creatorcontrib>Dods, Kara K</creatorcontrib><creatorcontrib>Abrigo, Nicolas A</creatorcontrib><creatorcontrib>Iqbal, Emil S</creatorcontrib><creatorcontrib>Hartman, Matthew CT</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current opinion in chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Stacie L</au><au>Dods, Kara K</au><au>Abrigo, Nicolas A</au><au>Iqbal, Emil S</au><au>Hartman, Matthew CT</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands</atitle><jtitle>Current opinion in chemical biology</jtitle><addtitle>Curr Opin Chem Biol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>46</volume><spage>172</spage><epage>179</epage><pages>172-179</pages><issn>1367-5931</issn><eissn>1879-0402</eissn><abstract>[Display omitted] •The genetic code can be altered in vitro using sense codon reprogramming, stop codon suppression, and by breaking degeneracy.•A variety of ncAAs can now be incorporated including D-amino acids, dipeptides, β-amino acids, and α-methyl amino acids.•Use of in vitro translation to introduce ncAAs into proteins enables rapid access to proteins endowed with novel properties.•ncAAs can be paired with orthogonal cyclization strategies to generate macrocyclic peptide libraries of various shapes.•These libraries are useful for the discovery of protease-stable peptide ligands to important drug targets. The ability to introduce non-canonical amino acids into peptides and proteins is facilitated by working within in vitro translation systems. Non-canonical amino acids can be introduced into these systems using sense codon reprogramming, stop codon suppression, and by breaking codon degeneracy. Here, we review how these techniques have been used to create proteins with novel properties and how they facilitate sophisticated studies of protein function. We also discuss how researchers are using in vitro translation experiments with non-canonical amino acids to explore the tolerance of the translation apparatus to artificial building blocks. Finally, we give several examples of how non-canonical amino acids can be combined with mRNA-displayed peptide libraries for the creation of protease-stable, macrocyclic peptide libraries for ligand discovery.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30077877</pmid><doi>10.1016/j.cbpa.2018.07.013</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-5931
ispartof Current opinion in chemical biology, 2018-10, Vol.46, p.172-179
issn 1367-5931
1879-0402
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6643963
source Elsevier ScienceDirect Journals Complete
title In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20genetic%20code%20reprogramming%20and%20expansion%20to%20study%20protein%20function%20and%20discover%20macrocyclic%20peptide%20ligands&rft.jtitle=Current%20opinion%20in%20chemical%20biology&rft.au=Richardson,%20Stacie%20L&rft.date=2018-10-01&rft.volume=46&rft.spage=172&rft.epage=179&rft.pages=172-179&rft.issn=1367-5931&rft.eissn=1879-0402&rft_id=info:doi/10.1016/j.cbpa.2018.07.013&rft_dat=%3Cproquest_pubme%3E2084341077%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084341077&rft_id=info:pmid/30077877&rft_els_id=S1367593117302351&rfr_iscdi=true