Quantum dots in biomedical applications
[Display omitted] Semiconducting nanoparticles, more commonly known as quantum dots, possess unique size and shape dependent optoelectronic properties. In recent years, these unique properties have attracted much attention in the biomedical field to enable real-time tissue imaging (bioimaging), diag...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2019-08, Vol.94, p.44-63 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | |
container_start_page | 44 |
container_title | Acta biomaterialia |
container_volume | 94 |
creator | Wagner, Angela M. Knipe, Jennifer M. Orive, Gorka Peppas, Nicholas A. |
description | [Display omitted]
Semiconducting nanoparticles, more commonly known as quantum dots, possess unique size and shape dependent optoelectronic properties. In recent years, these unique properties have attracted much attention in the biomedical field to enable real-time tissue imaging (bioimaging), diagnostics, single molecule probes, and drug delivery, among many other areas. The optical properties of quantum dots can be tuned by size and composition, and their high brightness, resistance to photobleaching, multiplexing capacity, and high surface-to-volume ratio make them excellent candidates for intracellular tracking, diagnostics, in vivo imaging, and therapeutic delivery. We discuss recent advances and challenges in the molecular design of quantum dots are discussed, along with applications of quantum dots as drug delivery vehicles, theranostic agents, single molecule probes, and real-time in vivo deep tissue imaging agents. We present a detailed discussion of the biodistribution and toxicity of quantum dots, and highlight recent advances to improve long-term stability in biological buffers, increase quantum yield following bioconjugation, and improve clearance from the body. Last, we present an outlook on future challenges and strategies to further advance translation to clinical application.
Semiconducting nanoparticles, commonly known as quantum dots, possess unique size and shape dependent electrical and optical properties. In recent years, they have attracted much attention in biomedical imaging to enable diagnostics, single molecule probes, and real-time imaging of tumors. This review discusses recent advances and challenges in the design of quantum dots, and highlights how these strategies can further advance translation to clinical applications. |
doi_str_mv | 10.1016/j.actbio.2019.05.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6642839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706119303393</els_id><sourcerecordid>2231994094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-3d212b0f2d271a0c13e59efa71b61a47af0a8b8300d3a4d714c2141b2dc2e5c3</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFSEhX80_CGEhh-Zid2YkW_KlEELSBhZCIHchy3KrxWttJTvQf1-FTbZtDjnNwLx5M-89xs4RSgSsv6xKY6fWh5IAmxKqEoj22DEqqQpZ1Wo_91JQIaHGI3aS0gqAKyR1yI44gqJKwjH7_DibcZrXiy5MaeHHRWZcu85bMyzMZjPkZvJhTJ_YQW-G5M5e6yl7urt9uvleLB--3d9cLwtbkZoK3hFSCz11JNGARe6qxvVGYlujEdL0YFSrOEDHjegkCksosKXOkqssP2Vft7Sbuc1vWDdO0Qx6E_3axN86GK__n4z-p_4RnnVdC1K8yQRXrwQx_JpdmvTaJ-uGwYwuzEkTcWwaAY3I0Mt30FWY45jVZZTkqJrsXEaJLcrGkFJ0_e4ZBP0ShF7pbRD6JQgNlc5B5LWLf4Xslt6c_6vUZTefvYs6We9Gm72Pzk66C_7jC38AhGSaxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273189061</pqid></control><display><type>article</type><title>Quantum dots in biomedical applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wagner, Angela M. ; Knipe, Jennifer M. ; Orive, Gorka ; Peppas, Nicholas A.</creator><creatorcontrib>Wagner, Angela M. ; Knipe, Jennifer M. ; Orive, Gorka ; Peppas, Nicholas A.</creatorcontrib><description>[Display omitted]
Semiconducting nanoparticles, more commonly known as quantum dots, possess unique size and shape dependent optoelectronic properties. In recent years, these unique properties have attracted much attention in the biomedical field to enable real-time tissue imaging (bioimaging), diagnostics, single molecule probes, and drug delivery, among many other areas. The optical properties of quantum dots can be tuned by size and composition, and their high brightness, resistance to photobleaching, multiplexing capacity, and high surface-to-volume ratio make them excellent candidates for intracellular tracking, diagnostics, in vivo imaging, and therapeutic delivery. We discuss recent advances and challenges in the molecular design of quantum dots are discussed, along with applications of quantum dots as drug delivery vehicles, theranostic agents, single molecule probes, and real-time in vivo deep tissue imaging agents. We present a detailed discussion of the biodistribution and toxicity of quantum dots, and highlight recent advances to improve long-term stability in biological buffers, increase quantum yield following bioconjugation, and improve clearance from the body. Last, we present an outlook on future challenges and strategies to further advance translation to clinical application.
Semiconducting nanoparticles, commonly known as quantum dots, possess unique size and shape dependent electrical and optical properties. In recent years, they have attracted much attention in biomedical imaging to enable diagnostics, single molecule probes, and real-time imaging of tumors. This review discusses recent advances and challenges in the design of quantum dots, and highlights how these strategies can further advance translation to clinical applications.</description><identifier>ISSN: 1742-7061</identifier><identifier>ISSN: 1878-7568</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2019.05.022</identifier><identifier>PMID: 31082570</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biocompatibility ; Biocompatible Materials - chemistry ; Bioimaging ; Biomedical materials ; Drug delivery ; Drug Delivery Systems ; Fluorescent Dyes - chemistry ; Humans ; Ligands ; Medical imaging ; Mice, Nude ; Molecular probes ; Multiplexing ; Nanoparticles ; Nanotechnology ; Nanotechnology - methods ; Nanotechnology - trends ; Optical properties ; Optics and Photonics ; Optoelectronics ; Photobleaching ; Probes ; Quantum Dots ; Real time ; Semiconductors ; Theranostic Nanomedicine ; Theranostics ; Tissue Distribution ; Toxicity</subject><ispartof>Acta biomaterialia, 2019-08, Vol.94, p.44-63</ispartof><rights>2019 Acta Materialia Inc.</rights><rights>Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Aug 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-3d212b0f2d271a0c13e59efa71b61a47af0a8b8300d3a4d714c2141b2dc2e5c3</citedby><cites>FETCH-LOGICAL-c528t-3d212b0f2d271a0c13e59efa71b61a47af0a8b8300d3a4d714c2141b2dc2e5c3</cites><orcidid>0000-0002-0773-300X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2019.05.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31082570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, Angela M.</creatorcontrib><creatorcontrib>Knipe, Jennifer M.</creatorcontrib><creatorcontrib>Orive, Gorka</creatorcontrib><creatorcontrib>Peppas, Nicholas A.</creatorcontrib><title>Quantum dots in biomedical applications</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Semiconducting nanoparticles, more commonly known as quantum dots, possess unique size and shape dependent optoelectronic properties. In recent years, these unique properties have attracted much attention in the biomedical field to enable real-time tissue imaging (bioimaging), diagnostics, single molecule probes, and drug delivery, among many other areas. The optical properties of quantum dots can be tuned by size and composition, and their high brightness, resistance to photobleaching, multiplexing capacity, and high surface-to-volume ratio make them excellent candidates for intracellular tracking, diagnostics, in vivo imaging, and therapeutic delivery. We discuss recent advances and challenges in the molecular design of quantum dots are discussed, along with applications of quantum dots as drug delivery vehicles, theranostic agents, single molecule probes, and real-time in vivo deep tissue imaging agents. We present a detailed discussion of the biodistribution and toxicity of quantum dots, and highlight recent advances to improve long-term stability in biological buffers, increase quantum yield following bioconjugation, and improve clearance from the body. Last, we present an outlook on future challenges and strategies to further advance translation to clinical application.
Semiconducting nanoparticles, commonly known as quantum dots, possess unique size and shape dependent electrical and optical properties. In recent years, they have attracted much attention in biomedical imaging to enable diagnostics, single molecule probes, and real-time imaging of tumors. This review discusses recent advances and challenges in the design of quantum dots, and highlights how these strategies can further advance translation to clinical applications.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bioimaging</subject><subject>Biomedical materials</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Humans</subject><subject>Ligands</subject><subject>Medical imaging</subject><subject>Mice, Nude</subject><subject>Molecular probes</subject><subject>Multiplexing</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>Nanotechnology - trends</subject><subject>Optical properties</subject><subject>Optics and Photonics</subject><subject>Optoelectronics</subject><subject>Photobleaching</subject><subject>Probes</subject><subject>Quantum Dots</subject><subject>Real time</subject><subject>Semiconductors</subject><subject>Theranostic Nanomedicine</subject><subject>Theranostics</subject><subject>Tissue Distribution</subject><subject>Toxicity</subject><issn>1742-7061</issn><issn>1878-7568</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1r3DAQFSEhX80_CGEhh-Zid2YkW_KlEELSBhZCIHchy3KrxWttJTvQf1-FTbZtDjnNwLx5M-89xs4RSgSsv6xKY6fWh5IAmxKqEoj22DEqqQpZ1Wo_91JQIaHGI3aS0gqAKyR1yI44gqJKwjH7_DibcZrXiy5MaeHHRWZcu85bMyzMZjPkZvJhTJ_YQW-G5M5e6yl7urt9uvleLB--3d9cLwtbkZoK3hFSCz11JNGARe6qxvVGYlujEdL0YFSrOEDHjegkCksosKXOkqssP2Vft7Sbuc1vWDdO0Qx6E_3axN86GK__n4z-p_4RnnVdC1K8yQRXrwQx_JpdmvTaJ-uGwYwuzEkTcWwaAY3I0Mt30FWY45jVZZTkqJrsXEaJLcrGkFJ0_e4ZBP0ShF7pbRD6JQgNlc5B5LWLf4Xslt6c_6vUZTefvYs6We9Gm72Pzk66C_7jC38AhGSaxA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Wagner, Angela M.</creator><creator>Knipe, Jennifer M.</creator><creator>Orive, Gorka</creator><creator>Peppas, Nicholas A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0773-300X</orcidid></search><sort><creationdate>20190801</creationdate><title>Quantum dots in biomedical applications</title><author>Wagner, Angela M. ; Knipe, Jennifer M. ; Orive, Gorka ; Peppas, Nicholas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-3d212b0f2d271a0c13e59efa71b61a47af0a8b8300d3a4d714c2141b2dc2e5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bioimaging</topic><topic>Biomedical materials</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Humans</topic><topic>Ligands</topic><topic>Medical imaging</topic><topic>Mice, Nude</topic><topic>Molecular probes</topic><topic>Multiplexing</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>Nanotechnology - trends</topic><topic>Optical properties</topic><topic>Optics and Photonics</topic><topic>Optoelectronics</topic><topic>Photobleaching</topic><topic>Probes</topic><topic>Quantum Dots</topic><topic>Real time</topic><topic>Semiconductors</topic><topic>Theranostic Nanomedicine</topic><topic>Theranostics</topic><topic>Tissue Distribution</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Angela M.</creatorcontrib><creatorcontrib>Knipe, Jennifer M.</creatorcontrib><creatorcontrib>Orive, Gorka</creatorcontrib><creatorcontrib>Peppas, Nicholas A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Angela M.</au><au>Knipe, Jennifer M.</au><au>Orive, Gorka</au><au>Peppas, Nicholas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum dots in biomedical applications</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>94</volume><spage>44</spage><epage>63</epage><pages>44-63</pages><issn>1742-7061</issn><issn>1878-7568</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Semiconducting nanoparticles, more commonly known as quantum dots, possess unique size and shape dependent optoelectronic properties. In recent years, these unique properties have attracted much attention in the biomedical field to enable real-time tissue imaging (bioimaging), diagnostics, single molecule probes, and drug delivery, among many other areas. The optical properties of quantum dots can be tuned by size and composition, and their high brightness, resistance to photobleaching, multiplexing capacity, and high surface-to-volume ratio make them excellent candidates for intracellular tracking, diagnostics, in vivo imaging, and therapeutic delivery. We discuss recent advances and challenges in the molecular design of quantum dots are discussed, along with applications of quantum dots as drug delivery vehicles, theranostic agents, single molecule probes, and real-time in vivo deep tissue imaging agents. We present a detailed discussion of the biodistribution and toxicity of quantum dots, and highlight recent advances to improve long-term stability in biological buffers, increase quantum yield following bioconjugation, and improve clearance from the body. Last, we present an outlook on future challenges and strategies to further advance translation to clinical application.
Semiconducting nanoparticles, commonly known as quantum dots, possess unique size and shape dependent electrical and optical properties. In recent years, they have attracted much attention in biomedical imaging to enable diagnostics, single molecule probes, and real-time imaging of tumors. This review discusses recent advances and challenges in the design of quantum dots, and highlights how these strategies can further advance translation to clinical applications.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31082570</pmid><doi>10.1016/j.actbio.2019.05.022</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0773-300X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2019-08, Vol.94, p.44-63 |
issn | 1742-7061 1878-7568 1878-7568 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6642839 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Biocompatibility Biocompatible Materials - chemistry Bioimaging Biomedical materials Drug delivery Drug Delivery Systems Fluorescent Dyes - chemistry Humans Ligands Medical imaging Mice, Nude Molecular probes Multiplexing Nanoparticles Nanotechnology Nanotechnology - methods Nanotechnology - trends Optical properties Optics and Photonics Optoelectronics Photobleaching Probes Quantum Dots Real time Semiconductors Theranostic Nanomedicine Theranostics Tissue Distribution Toxicity |
title | Quantum dots in biomedical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20dots%20in%20biomedical%20applications&rft.jtitle=Acta%20biomaterialia&rft.au=Wagner,%20Angela%20M.&rft.date=2019-08-01&rft.volume=94&rft.spage=44&rft.epage=63&rft.pages=44-63&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2019.05.022&rft_dat=%3Cproquest_pubme%3E2231994094%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273189061&rft_id=info:pmid/31082570&rft_els_id=S1742706119303393&rfr_iscdi=true |