Transcription preinitiation complex structure and dynamics provide insight into genetic diseases

Transcription preinitiation complexes (PICs) are vital assemblies whose function underlies the expression of protein-encoding genes. Cryo-EM advances have begun to uncover their structural organization. Nevertheless, functional analyses are hindered by incompletely modeled regions. Here we integrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2019-06, Vol.26 (6), p.397-406
Hauptverfasser: Yan, Chunli, Dodd, Thomas, He, Yuan, Tainer, John A., Tsutakawa, Susan E., Ivanov, Ivaylo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 6
container_start_page 397
container_title Nature structural & molecular biology
container_volume 26
creator Yan, Chunli
Dodd, Thomas
He, Yuan
Tainer, John A.
Tsutakawa, Susan E.
Ivanov, Ivaylo
description Transcription preinitiation complexes (PICs) are vital assemblies whose function underlies the expression of protein-encoding genes. Cryo-EM advances have begun to uncover their structural organization. Nevertheless, functional analyses are hindered by incompletely modeled regions. Here we integrate all available cryo-EM data to build a practically complete human PIC structural model. This enables simulations that reveal the assembly’s global motions, define PIC partitioning into dynamic communities and delineate how structural modules function together to remodel DNA. We identify key TFIIE–p62 interactions that link core-PIC to TFIIH. p62 rigging interlaces p34, p44 and XPD while capping the DNA-binding and ATP-binding sites of XPD. PIC kinks and locks substrate DNA, creating negative supercoiling within the Pol II cleft to facilitate promoter opening. Mapping disease mutations associated with xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome onto defined communities reveals clustering into three mechanistic classes that affect TFIIH helicase functions, protein interactions and interface dynamics. A structural model of the human RNA polymerase II preinitiation complex based on high-resolution cryo-EM data provides mechanistic insights into the consequences of human disease mutations.
doi_str_mv 10.1038/s41594-019-0220-3
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6642811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382333</galeid><sourcerecordid>A593382333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-c5ba86e08f6494af48e8a81a10baffc6fe42489ce31d6a680a8d1e36c33a95b3</originalsourceid><addsrcrecordid>eNp1kl1vFCEUhonR2Hb1B3hjJnqjF1P5nIWbJk3jR5MmJrr3yDJnZmlmYQSmaf-9TLduXaOQ8PmcFzi8CL0i-JRgJj8kToTiNSaqxpTimj1Bx0RwUSslxdP9WLEjdJLSNcZUiCV7jo4YIQRTJY7Rj1U0PtnoxuyCr8YIzrvszP3Mhu04wG2VcpxsniJUxrdVe-fN1tlU4HDjWqicT67f5NLnUPXgITtbtS6BSZBeoGedGRK8fOgXaPXp4-riS3319fPlxflVbYWSubRrIxvAsmu44qbjEqSRxBC8Nl1nmw445VJZYKRtTCOxkS0B1ljGjBJrtkBnO9lxWm-hteBzNIMeo9uaeKeDcfpwx7uN7sONbhpOJSFF4M1OIKTsdLIug93Y4D3YrIloxLKkboHePZwSw88JUtZblywMg_EQpqQpZRQrxgUt6Nu_0OswRV9SMFNFTy65eqR6M4B2vgvlcnYW1edCMSYpK2WBTv9BldpC-YjgoXNl_SDg_UFAYTLc5t5MKenL798OWbJjbQwpRej2SSNYzzbTO5vpYjM920zPMa__zPY-4revCkB3QCpbvof4-Pr_q_4CxaDdjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235658749</pqid></control><display><type>article</type><title>Transcription preinitiation complex structure and dynamics provide insight into genetic diseases</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Yan, Chunli ; Dodd, Thomas ; He, Yuan ; Tainer, John A. ; Tsutakawa, Susan E. ; Ivanov, Ivaylo</creator><creatorcontrib>Yan, Chunli ; Dodd, Thomas ; He, Yuan ; Tainer, John A. ; Tsutakawa, Susan E. ; Ivanov, Ivaylo ; UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><description>Transcription preinitiation complexes (PICs) are vital assemblies whose function underlies the expression of protein-encoding genes. Cryo-EM advances have begun to uncover their structural organization. Nevertheless, functional analyses are hindered by incompletely modeled regions. Here we integrate all available cryo-EM data to build a practically complete human PIC structural model. This enables simulations that reveal the assembly’s global motions, define PIC partitioning into dynamic communities and delineate how structural modules function together to remodel DNA. We identify key TFIIE–p62 interactions that link core-PIC to TFIIH. p62 rigging interlaces p34, p44 and XPD while capping the DNA-binding and ATP-binding sites of XPD. PIC kinks and locks substrate DNA, creating negative supercoiling within the Pol II cleft to facilitate promoter opening. Mapping disease mutations associated with xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome onto defined communities reveals clustering into three mechanistic classes that affect TFIIH helicase functions, protein interactions and interface dynamics. A structural model of the human RNA polymerase II preinitiation complex based on high-resolution cryo-EM data provides mechanistic insights into the consequences of human disease mutations.</description><identifier>ISSN: 1545-9993</identifier><identifier>ISSN: 1545-9985</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-019-0220-3</identifier><identifier>PMID: 31110295</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114 ; 631/337/572 ; 631/535/1258 ; Binding sites ; Biochemistry ; Biochemistry &amp; Molecular Biology ; Biological Microscopy ; Biomedical and Life Sciences ; Biophysics ; Cell Biology ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - metabolism ; Clustering ; Cockayne syndrome ; Communities ; Computer simulation ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA - metabolism ; DNA helicase ; Functional morphology ; Gene expression ; Gene mapping ; Gene mutations ; Genetic disorders ; Humans ; Life Sciences ; Mapping ; Membrane Biology ; Models, Molecular ; Mutation ; Protein interaction ; Protein Interaction Maps ; Protein Structure ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Proteins ; Rigging ; RNA polymerases ; Structure-function relationships ; Substrates ; Supercoiling ; Transcription ; Transcription Factor TFIIH - chemistry ; Transcription Factor TFIIH - metabolism ; Transcription factors ; Transcription Factors - chemistry ; Transcription Factors - metabolism ; Transcription Factors, TFII - chemistry ; Transcription Factors, TFII - metabolism ; Transcription Initiation, Genetic ; Trichothiodystrophy ; Xeroderma pigmentosum ; XPD protein</subject><ispartof>Nature structural &amp; molecular biology, 2019-06, Vol.26 (6), p.397-406</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-c5ba86e08f6494af48e8a81a10baffc6fe42489ce31d6a680a8d1e36c33a95b3</citedby><cites>FETCH-LOGICAL-c598t-c5ba86e08f6494af48e8a81a10baffc6fe42489ce31d6a680a8d1e36c33a95b3</cites><orcidid>0000-0003-3149-013X ; 0000-0003-1659-2429 ; 0000-0002-5306-1005 ; 0000000253061005 ; 000000033149013X ; 0000000316592429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31110295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1565757$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Chunli</creatorcontrib><creatorcontrib>Dodd, Thomas</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Tsutakawa, Susan E.</creatorcontrib><creatorcontrib>Ivanov, Ivaylo</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><title>Transcription preinitiation complex structure and dynamics provide insight into genetic diseases</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Transcription preinitiation complexes (PICs) are vital assemblies whose function underlies the expression of protein-encoding genes. Cryo-EM advances have begun to uncover their structural organization. Nevertheless, functional analyses are hindered by incompletely modeled regions. Here we integrate all available cryo-EM data to build a practically complete human PIC structural model. This enables simulations that reveal the assembly’s global motions, define PIC partitioning into dynamic communities and delineate how structural modules function together to remodel DNA. We identify key TFIIE–p62 interactions that link core-PIC to TFIIH. p62 rigging interlaces p34, p44 and XPD while capping the DNA-binding and ATP-binding sites of XPD. PIC kinks and locks substrate DNA, creating negative supercoiling within the Pol II cleft to facilitate promoter opening. Mapping disease mutations associated with xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome onto defined communities reveals clustering into three mechanistic classes that affect TFIIH helicase functions, protein interactions and interface dynamics. A structural model of the human RNA polymerase II preinitiation complex based on high-resolution cryo-EM data provides mechanistic insights into the consequences of human disease mutations.</description><subject>631/114</subject><subject>631/337/572</subject><subject>631/535/1258</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Cell Biology</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Clustering</subject><subject>Cockayne syndrome</subject><subject>Communities</subject><subject>Computer simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA helicase</subject><subject>Functional morphology</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Gene mutations</subject><subject>Genetic disorders</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mapping</subject><subject>Membrane Biology</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Protein interaction</subject><subject>Protein Interaction Maps</subject><subject>Protein Structure</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Proteins</subject><subject>Rigging</subject><subject>RNA polymerases</subject><subject>Structure-function relationships</subject><subject>Substrates</subject><subject>Supercoiling</subject><subject>Transcription</subject><subject>Transcription Factor TFIIH - chemistry</subject><subject>Transcription Factor TFIIH - metabolism</subject><subject>Transcription factors</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription Factors, TFII - chemistry</subject><subject>Transcription Factors, TFII - metabolism</subject><subject>Transcription Initiation, Genetic</subject><subject>Trichothiodystrophy</subject><subject>Xeroderma pigmentosum</subject><subject>XPD protein</subject><issn>1545-9993</issn><issn>1545-9985</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kl1vFCEUhonR2Hb1B3hjJnqjF1P5nIWbJk3jR5MmJrr3yDJnZmlmYQSmaf-9TLduXaOQ8PmcFzi8CL0i-JRgJj8kToTiNSaqxpTimj1Bx0RwUSslxdP9WLEjdJLSNcZUiCV7jo4YIQRTJY7Rj1U0PtnoxuyCr8YIzrvszP3Mhu04wG2VcpxsniJUxrdVe-fN1tlU4HDjWqicT67f5NLnUPXgITtbtS6BSZBeoGedGRK8fOgXaPXp4-riS3319fPlxflVbYWSubRrIxvAsmu44qbjEqSRxBC8Nl1nmw445VJZYKRtTCOxkS0B1ljGjBJrtkBnO9lxWm-hteBzNIMeo9uaeKeDcfpwx7uN7sONbhpOJSFF4M1OIKTsdLIug93Y4D3YrIloxLKkboHePZwSw88JUtZblywMg_EQpqQpZRQrxgUt6Nu_0OswRV9SMFNFTy65eqR6M4B2vgvlcnYW1edCMSYpK2WBTv9BldpC-YjgoXNl_SDg_UFAYTLc5t5MKenL798OWbJjbQwpRej2SSNYzzbTO5vpYjM920zPMa__zPY-4revCkB3QCpbvof4-Pr_q_4CxaDdjA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Yan, Chunli</creator><creator>Dodd, Thomas</creator><creator>He, Yuan</creator><creator>Tainer, John A.</creator><creator>Tsutakawa, Susan E.</creator><creator>Ivanov, Ivaylo</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3149-013X</orcidid><orcidid>https://orcid.org/0000-0003-1659-2429</orcidid><orcidid>https://orcid.org/0000-0002-5306-1005</orcidid><orcidid>https://orcid.org/0000000253061005</orcidid><orcidid>https://orcid.org/000000033149013X</orcidid><orcidid>https://orcid.org/0000000316592429</orcidid></search><sort><creationdate>20190601</creationdate><title>Transcription preinitiation complex structure and dynamics provide insight into genetic diseases</title><author>Yan, Chunli ; Dodd, Thomas ; He, Yuan ; Tainer, John A. ; Tsutakawa, Susan E. ; Ivanov, Ivaylo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-c5ba86e08f6494af48e8a81a10baffc6fe42489ce31d6a680a8d1e36c33a95b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114</topic><topic>631/337/572</topic><topic>631/535/1258</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Cell Biology</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Clustering</topic><topic>Cockayne syndrome</topic><topic>Communities</topic><topic>Computer simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA helicase</topic><topic>Functional morphology</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Gene mutations</topic><topic>Genetic disorders</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mapping</topic><topic>Membrane Biology</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Protein interaction</topic><topic>Protein Interaction Maps</topic><topic>Protein Structure</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Proteins</topic><topic>Rigging</topic><topic>RNA polymerases</topic><topic>Structure-function relationships</topic><topic>Substrates</topic><topic>Supercoiling</topic><topic>Transcription</topic><topic>Transcription Factor TFIIH - chemistry</topic><topic>Transcription Factor TFIIH - metabolism</topic><topic>Transcription factors</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription Factors, TFII - chemistry</topic><topic>Transcription Factors, TFII - metabolism</topic><topic>Transcription Initiation, Genetic</topic><topic>Trichothiodystrophy</topic><topic>Xeroderma pigmentosum</topic><topic>XPD protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Chunli</creatorcontrib><creatorcontrib>Dodd, Thomas</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Tsutakawa, Susan E.</creatorcontrib><creatorcontrib>Ivanov, Ivaylo</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Chunli</au><au>Dodd, Thomas</au><au>He, Yuan</au><au>Tainer, John A.</au><au>Tsutakawa, Susan E.</au><au>Ivanov, Ivaylo</au><aucorp>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcription preinitiation complex structure and dynamics provide insight into genetic diseases</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>26</volume><issue>6</issue><spage>397</spage><epage>406</epage><pages>397-406</pages><issn>1545-9993</issn><issn>1545-9985</issn><eissn>1545-9985</eissn><abstract>Transcription preinitiation complexes (PICs) are vital assemblies whose function underlies the expression of protein-encoding genes. Cryo-EM advances have begun to uncover their structural organization. Nevertheless, functional analyses are hindered by incompletely modeled regions. Here we integrate all available cryo-EM data to build a practically complete human PIC structural model. This enables simulations that reveal the assembly’s global motions, define PIC partitioning into dynamic communities and delineate how structural modules function together to remodel DNA. We identify key TFIIE–p62 interactions that link core-PIC to TFIIH. p62 rigging interlaces p34, p44 and XPD while capping the DNA-binding and ATP-binding sites of XPD. PIC kinks and locks substrate DNA, creating negative supercoiling within the Pol II cleft to facilitate promoter opening. Mapping disease mutations associated with xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome onto defined communities reveals clustering into three mechanistic classes that affect TFIIH helicase functions, protein interactions and interface dynamics. A structural model of the human RNA polymerase II preinitiation complex based on high-resolution cryo-EM data provides mechanistic insights into the consequences of human disease mutations.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31110295</pmid><doi>10.1038/s41594-019-0220-3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3149-013X</orcidid><orcidid>https://orcid.org/0000-0003-1659-2429</orcidid><orcidid>https://orcid.org/0000-0002-5306-1005</orcidid><orcidid>https://orcid.org/0000000253061005</orcidid><orcidid>https://orcid.org/000000033149013X</orcidid><orcidid>https://orcid.org/0000000316592429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2019-06, Vol.26 (6), p.397-406
issn 1545-9993
1545-9985
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6642811
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/114
631/337/572
631/535/1258
Binding sites
Biochemistry
Biochemistry & Molecular Biology
Biological Microscopy
Biomedical and Life Sciences
Biophysics
Cell Biology
Cell Cycle Proteins - chemistry
Cell Cycle Proteins - metabolism
Clustering
Cockayne syndrome
Communities
Computer simulation
Deoxyribonucleic acid
DNA
DNA - genetics
DNA - metabolism
DNA helicase
Functional morphology
Gene expression
Gene mapping
Gene mutations
Genetic disorders
Humans
Life Sciences
Mapping
Membrane Biology
Models, Molecular
Mutation
Protein interaction
Protein Interaction Maps
Protein Structure
Protein Subunits - chemistry
Protein Subunits - metabolism
Proteins
Rigging
RNA polymerases
Structure-function relationships
Substrates
Supercoiling
Transcription
Transcription Factor TFIIH - chemistry
Transcription Factor TFIIH - metabolism
Transcription factors
Transcription Factors - chemistry
Transcription Factors - metabolism
Transcription Factors, TFII - chemistry
Transcription Factors, TFII - metabolism
Transcription Initiation, Genetic
Trichothiodystrophy
Xeroderma pigmentosum
XPD protein
title Transcription preinitiation complex structure and dynamics provide insight into genetic diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcription%20preinitiation%20complex%20structure%20and%20dynamics%20provide%20insight%20into%20genetic%20diseases&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Yan,%20Chunli&rft.aucorp=UT-Battelle%20LLC/ORNL,%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-06-01&rft.volume=26&rft.issue=6&rft.spage=397&rft.epage=406&rft.pages=397-406&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-019-0220-3&rft_dat=%3Cgale_pubme%3EA593382333%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235658749&rft_id=info:pmid/31110295&rft_galeid=A593382333&rfr_iscdi=true