Classifier Personalization for Activity Recognition Using Wrist Accelerometers

Intersubject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this paper, we propose an approach for personalizing classification rules to a single person. We demonstrate that the metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2019-07, Vol.23 (4), p.1585-1594
Hauptverfasser: Mannini, Andrea, Intille, Stephen S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1594
container_issue 4
container_start_page 1585
container_title IEEE journal of biomedical and health informatics
container_volume 23
creator Mannini, Andrea
Intille, Stephen S.
description Intersubject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this paper, we propose an approach for personalizing classification rules to a single person. We demonstrate that the method improves activity detection from wrist-worn accelerometer data on a four-class recognition problem of interest to the exercise science community, where classes are ambulation, cycling, sedentary, and other. We extend a previously published activity classification method based on support vector machines so that it estimates classification uncertainty. Uncertainty is used to drive data label requests from the user, and the resulting label information is used to update the classifier. Two different datasets- one from 33 adults with 26 activity types, and another from 20 youth with 23 activity types-were used to evaluate the method using leave-one-subject-out and leave-one-groupout cross validation. The new method improved overall recognition accuracy up to 11% on average, with some large person-specific improvements (ranging from -2% to +36%). The proposed method is suitable for online implementation supporting real-time recognition systems.
doi_str_mv 10.1109/JBHI.2018.2869779
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6639791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8462755</ieee_id><sourcerecordid>2253462106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-958ccb222793a14c638e2375408b4492be8d59afd1dd18f2566e87fb32c29bec3</originalsourceid><addsrcrecordid>eNpdkctKAzEUhoMoKtoHEEEG3LhpzWWSSTaCFq-IiiguQyZzpkamE02mBX16U3tBzSYh5zv_ufwI7RE8IASr45uzq-sBxUQOqBSqKNQa2qZEyD6lWK4v30TlW6gX4xtOR6YvJTbRFsOUUi7lNrobNiZGVzsI2QOE6FvTuC_TOd9mtQ_Zqe3c1HWf2SNYP2rdT-A5unaUvQQXuwRYaCD4MXQpfRdt1KaJ0FvcO-j54vxpeNW_vb-8Hp7e9m2ueNdXXFpbph4KxQzJrWASKCt4jmWZ54qWICuuTF2RqiKyplwIkEVdMmqpKsGyHXQy132flGOoLLRdMI1-D25swqf2xum_kda96pGfaiGYKhRJAkcLgeA_JhA7PXYxTdKYFvwkappWzJjAXCX08B_65ich7SlRlLNcJFYkiswpG3yMAepVMwTrmWF6ZpieGaYXhqWcg99TrDKW9iRgfw44AFiFZSpZcM6-AbGAmq4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253462106</pqid></control><display><type>article</type><title>Classifier Personalization for Activity Recognition Using Wrist Accelerometers</title><source>IEEE Electronic Library (IEL)</source><creator>Mannini, Andrea ; Intille, Stephen S.</creator><creatorcontrib>Mannini, Andrea ; Intille, Stephen S.</creatorcontrib><description>Intersubject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this paper, we propose an approach for personalizing classification rules to a single person. We demonstrate that the method improves activity detection from wrist-worn accelerometer data on a four-class recognition problem of interest to the exercise science community, where classes are ambulation, cycling, sedentary, and other. We extend a previously published activity classification method based on support vector machines so that it estimates classification uncertainty. Uncertainty is used to drive data label requests from the user, and the resulting label information is used to update the classifier. Two different datasets- one from 33 adults with 26 activity types, and another from 20 youth with 23 activity types-were used to evaluate the method using leave-one-subject-out and leave-one-groupout cross validation. The new method improved overall recognition accuracy up to 11% on average, with some large person-specific improvements (ranging from -2% to +36%). The proposed method is suitable for online implementation supporting real-time recognition systems.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2018.2869779</identifier><identifier>PMID: 30222588</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accelerometers ; Accelerometry - methods ; Active learning ; Activity recognition ; Algorithms ; Classification ; Classification algorithms ; Classifiers ; Human Activities - classification ; Humans ; incremental learning ; Machine Learning ; personalization ; Signal Processing, Computer-Assisted ; Support Vector Machine ; Support vector machines ; Testing ; Training ; Uncertainty ; Wearable Electronic Devices ; wearable sensors ; Wrist ; Wrist - physiology</subject><ispartof>IEEE journal of biomedical and health informatics, 2019-07, Vol.23 (4), p.1585-1594</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-958ccb222793a14c638e2375408b4492be8d59afd1dd18f2566e87fb32c29bec3</citedby><cites>FETCH-LOGICAL-c495t-958ccb222793a14c638e2375408b4492be8d59afd1dd18f2566e87fb32c29bec3</cites><orcidid>0000-0002-0287-2553 ; 0000-0003-0760-052X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8462755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8462755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30222588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannini, Andrea</creatorcontrib><creatorcontrib>Intille, Stephen S.</creatorcontrib><title>Classifier Personalization for Activity Recognition Using Wrist Accelerometers</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Intersubject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this paper, we propose an approach for personalizing classification rules to a single person. We demonstrate that the method improves activity detection from wrist-worn accelerometer data on a four-class recognition problem of interest to the exercise science community, where classes are ambulation, cycling, sedentary, and other. We extend a previously published activity classification method based on support vector machines so that it estimates classification uncertainty. Uncertainty is used to drive data label requests from the user, and the resulting label information is used to update the classifier. Two different datasets- one from 33 adults with 26 activity types, and another from 20 youth with 23 activity types-were used to evaluate the method using leave-one-subject-out and leave-one-groupout cross validation. The new method improved overall recognition accuracy up to 11% on average, with some large person-specific improvements (ranging from -2% to +36%). The proposed method is suitable for online implementation supporting real-time recognition systems.</description><subject>Accelerometers</subject><subject>Accelerometry - methods</subject><subject>Active learning</subject><subject>Activity recognition</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Classifiers</subject><subject>Human Activities - classification</subject><subject>Humans</subject><subject>incremental learning</subject><subject>Machine Learning</subject><subject>personalization</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Testing</subject><subject>Training</subject><subject>Uncertainty</subject><subject>Wearable Electronic Devices</subject><subject>wearable sensors</subject><subject>Wrist</subject><subject>Wrist - physiology</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkctKAzEUhoMoKtoHEEEG3LhpzWWSSTaCFq-IiiguQyZzpkamE02mBX16U3tBzSYh5zv_ufwI7RE8IASr45uzq-sBxUQOqBSqKNQa2qZEyD6lWK4v30TlW6gX4xtOR6YvJTbRFsOUUi7lNrobNiZGVzsI2QOE6FvTuC_TOd9mtQ_Zqe3c1HWf2SNYP2rdT-A5unaUvQQXuwRYaCD4MXQpfRdt1KaJ0FvcO-j54vxpeNW_vb-8Hp7e9m2ueNdXXFpbph4KxQzJrWASKCt4jmWZ54qWICuuTF2RqiKyplwIkEVdMmqpKsGyHXQy132flGOoLLRdMI1-D25swqf2xum_kda96pGfaiGYKhRJAkcLgeA_JhA7PXYxTdKYFvwkappWzJjAXCX08B_65ich7SlRlLNcJFYkiswpG3yMAepVMwTrmWF6ZpieGaYXhqWcg99TrDKW9iRgfw44AFiFZSpZcM6-AbGAmq4</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Mannini, Andrea</creator><creator>Intille, Stephen S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0287-2553</orcidid><orcidid>https://orcid.org/0000-0003-0760-052X</orcidid></search><sort><creationdate>20190701</creationdate><title>Classifier Personalization for Activity Recognition Using Wrist Accelerometers</title><author>Mannini, Andrea ; Intille, Stephen S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-958ccb222793a14c638e2375408b4492be8d59afd1dd18f2566e87fb32c29bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerometers</topic><topic>Accelerometry - methods</topic><topic>Active learning</topic><topic>Activity recognition</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Classifiers</topic><topic>Human Activities - classification</topic><topic>Humans</topic><topic>incremental learning</topic><topic>Machine Learning</topic><topic>personalization</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Testing</topic><topic>Training</topic><topic>Uncertainty</topic><topic>Wearable Electronic Devices</topic><topic>wearable sensors</topic><topic>Wrist</topic><topic>Wrist - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannini, Andrea</creatorcontrib><creatorcontrib>Intille, Stephen S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mannini, Andrea</au><au>Intille, Stephen S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifier Personalization for Activity Recognition Using Wrist Accelerometers</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>23</volume><issue>4</issue><spage>1585</spage><epage>1594</epage><pages>1585-1594</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Intersubject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this paper, we propose an approach for personalizing classification rules to a single person. We demonstrate that the method improves activity detection from wrist-worn accelerometer data on a four-class recognition problem of interest to the exercise science community, where classes are ambulation, cycling, sedentary, and other. We extend a previously published activity classification method based on support vector machines so that it estimates classification uncertainty. Uncertainty is used to drive data label requests from the user, and the resulting label information is used to update the classifier. Two different datasets- one from 33 adults with 26 activity types, and another from 20 youth with 23 activity types-were used to evaluate the method using leave-one-subject-out and leave-one-groupout cross validation. The new method improved overall recognition accuracy up to 11% on average, with some large person-specific improvements (ranging from -2% to +36%). The proposed method is suitable for online implementation supporting real-time recognition systems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30222588</pmid><doi>10.1109/JBHI.2018.2869779</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0287-2553</orcidid><orcidid>https://orcid.org/0000-0003-0760-052X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2019-07, Vol.23 (4), p.1585-1594
issn 2168-2194
2168-2208
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6639791
source IEEE Electronic Library (IEL)
subjects Accelerometers
Accelerometry - methods
Active learning
Activity recognition
Algorithms
Classification
Classification algorithms
Classifiers
Human Activities - classification
Humans
incremental learning
Machine Learning
personalization
Signal Processing, Computer-Assisted
Support Vector Machine
Support vector machines
Testing
Training
Uncertainty
Wearable Electronic Devices
wearable sensors
Wrist
Wrist - physiology
title Classifier Personalization for Activity Recognition Using Wrist Accelerometers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifier%20Personalization%20for%20Activity%20Recognition%20Using%20Wrist%20Accelerometers&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Mannini,%20Andrea&rft.date=2019-07-01&rft.volume=23&rft.issue=4&rft.spage=1585&rft.epage=1594&rft.pages=1585-1594&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2018.2869779&rft_dat=%3Cproquest_RIE%3E2253462106%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253462106&rft_id=info:pmid/30222588&rft_ieee_id=8462755&rfr_iscdi=true