Classifier Personalization for Activity Recognition Using Wrist Accelerometers
Intersubject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this paper, we propose an approach for personalizing classification rules to a single person. We demonstrate that the metho...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2019-07, Vol.23 (4), p.1585-1594 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1594 |
---|---|
container_issue | 4 |
container_start_page | 1585 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 23 |
creator | Mannini, Andrea Intille, Stephen S. |
description | Intersubject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this paper, we propose an approach for personalizing classification rules to a single person. We demonstrate that the method improves activity detection from wrist-worn accelerometer data on a four-class recognition problem of interest to the exercise science community, where classes are ambulation, cycling, sedentary, and other. We extend a previously published activity classification method based on support vector machines so that it estimates classification uncertainty. Uncertainty is used to drive data label requests from the user, and the resulting label information is used to update the classifier. Two different datasets- one from 33 adults with 26 activity types, and another from 20 youth with 23 activity types-were used to evaluate the method using leave-one-subject-out and leave-one-groupout cross validation. The new method improved overall recognition accuracy up to 11% on average, with some large person-specific improvements (ranging from -2% to +36%). The proposed method is suitable for online implementation supporting real-time recognition systems. |
doi_str_mv | 10.1109/JBHI.2018.2869779 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6639791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8462755</ieee_id><sourcerecordid>2253462106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-958ccb222793a14c638e2375408b4492be8d59afd1dd18f2566e87fb32c29bec3</originalsourceid><addsrcrecordid>eNpdkctKAzEUhoMoKtoHEEEG3LhpzWWSSTaCFq-IiiguQyZzpkamE02mBX16U3tBzSYh5zv_ufwI7RE8IASr45uzq-sBxUQOqBSqKNQa2qZEyD6lWK4v30TlW6gX4xtOR6YvJTbRFsOUUi7lNrobNiZGVzsI2QOE6FvTuC_TOd9mtQ_Zqe3c1HWf2SNYP2rdT-A5unaUvQQXuwRYaCD4MXQpfRdt1KaJ0FvcO-j54vxpeNW_vb-8Hp7e9m2ueNdXXFpbph4KxQzJrWASKCt4jmWZ54qWICuuTF2RqiKyplwIkEVdMmqpKsGyHXQy132flGOoLLRdMI1-D25swqf2xum_kda96pGfaiGYKhRJAkcLgeA_JhA7PXYxTdKYFvwkappWzJjAXCX08B_65ich7SlRlLNcJFYkiswpG3yMAepVMwTrmWF6ZpieGaYXhqWcg99TrDKW9iRgfw44AFiFZSpZcM6-AbGAmq4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253462106</pqid></control><display><type>article</type><title>Classifier Personalization for Activity Recognition Using Wrist Accelerometers</title><source>IEEE Electronic Library (IEL)</source><creator>Mannini, Andrea ; Intille, Stephen S.</creator><creatorcontrib>Mannini, Andrea ; Intille, Stephen S.</creatorcontrib><description>Intersubject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this paper, we propose an approach for personalizing classification rules to a single person. We demonstrate that the method improves activity detection from wrist-worn accelerometer data on a four-class recognition problem of interest to the exercise science community, where classes are ambulation, cycling, sedentary, and other. We extend a previously published activity classification method based on support vector machines so that it estimates classification uncertainty. Uncertainty is used to drive data label requests from the user, and the resulting label information is used to update the classifier. Two different datasets- one from 33 adults with 26 activity types, and another from 20 youth with 23 activity types-were used to evaluate the method using leave-one-subject-out and leave-one-groupout cross validation. The new method improved overall recognition accuracy up to 11% on average, with some large person-specific improvements (ranging from -2% to +36%). The proposed method is suitable for online implementation supporting real-time recognition systems.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2018.2869779</identifier><identifier>PMID: 30222588</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accelerometers ; Accelerometry - methods ; Active learning ; Activity recognition ; Algorithms ; Classification ; Classification algorithms ; Classifiers ; Human Activities - classification ; Humans ; incremental learning ; Machine Learning ; personalization ; Signal Processing, Computer-Assisted ; Support Vector Machine ; Support vector machines ; Testing ; Training ; Uncertainty ; Wearable Electronic Devices ; wearable sensors ; Wrist ; Wrist - physiology</subject><ispartof>IEEE journal of biomedical and health informatics, 2019-07, Vol.23 (4), p.1585-1594</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-958ccb222793a14c638e2375408b4492be8d59afd1dd18f2566e87fb32c29bec3</citedby><cites>FETCH-LOGICAL-c495t-958ccb222793a14c638e2375408b4492be8d59afd1dd18f2566e87fb32c29bec3</cites><orcidid>0000-0002-0287-2553 ; 0000-0003-0760-052X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8462755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8462755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30222588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannini, Andrea</creatorcontrib><creatorcontrib>Intille, Stephen S.</creatorcontrib><title>Classifier Personalization for Activity Recognition Using Wrist Accelerometers</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Intersubject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this paper, we propose an approach for personalizing classification rules to a single person. We demonstrate that the method improves activity detection from wrist-worn accelerometer data on a four-class recognition problem of interest to the exercise science community, where classes are ambulation, cycling, sedentary, and other. We extend a previously published activity classification method based on support vector machines so that it estimates classification uncertainty. Uncertainty is used to drive data label requests from the user, and the resulting label information is used to update the classifier. Two different datasets- one from 33 adults with 26 activity types, and another from 20 youth with 23 activity types-were used to evaluate the method using leave-one-subject-out and leave-one-groupout cross validation. The new method improved overall recognition accuracy up to 11% on average, with some large person-specific improvements (ranging from -2% to +36%). The proposed method is suitable for online implementation supporting real-time recognition systems.</description><subject>Accelerometers</subject><subject>Accelerometry - methods</subject><subject>Active learning</subject><subject>Activity recognition</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Classifiers</subject><subject>Human Activities - classification</subject><subject>Humans</subject><subject>incremental learning</subject><subject>Machine Learning</subject><subject>personalization</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Testing</subject><subject>Training</subject><subject>Uncertainty</subject><subject>Wearable Electronic Devices</subject><subject>wearable sensors</subject><subject>Wrist</subject><subject>Wrist - physiology</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkctKAzEUhoMoKtoHEEEG3LhpzWWSSTaCFq-IiiguQyZzpkamE02mBX16U3tBzSYh5zv_ufwI7RE8IASr45uzq-sBxUQOqBSqKNQa2qZEyD6lWK4v30TlW6gX4xtOR6YvJTbRFsOUUi7lNrobNiZGVzsI2QOE6FvTuC_TOd9mtQ_Zqe3c1HWf2SNYP2rdT-A5unaUvQQXuwRYaCD4MXQpfRdt1KaJ0FvcO-j54vxpeNW_vb-8Hp7e9m2ueNdXXFpbph4KxQzJrWASKCt4jmWZ54qWICuuTF2RqiKyplwIkEVdMmqpKsGyHXQy132flGOoLLRdMI1-D25swqf2xum_kda96pGfaiGYKhRJAkcLgeA_JhA7PXYxTdKYFvwkappWzJjAXCX08B_65ich7SlRlLNcJFYkiswpG3yMAepVMwTrmWF6ZpieGaYXhqWcg99TrDKW9iRgfw44AFiFZSpZcM6-AbGAmq4</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Mannini, Andrea</creator><creator>Intille, Stephen S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0287-2553</orcidid><orcidid>https://orcid.org/0000-0003-0760-052X</orcidid></search><sort><creationdate>20190701</creationdate><title>Classifier Personalization for Activity Recognition Using Wrist Accelerometers</title><author>Mannini, Andrea ; Intille, Stephen S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-958ccb222793a14c638e2375408b4492be8d59afd1dd18f2566e87fb32c29bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerometers</topic><topic>Accelerometry - methods</topic><topic>Active learning</topic><topic>Activity recognition</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Classifiers</topic><topic>Human Activities - classification</topic><topic>Humans</topic><topic>incremental learning</topic><topic>Machine Learning</topic><topic>personalization</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Testing</topic><topic>Training</topic><topic>Uncertainty</topic><topic>Wearable Electronic Devices</topic><topic>wearable sensors</topic><topic>Wrist</topic><topic>Wrist - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannini, Andrea</creatorcontrib><creatorcontrib>Intille, Stephen S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mannini, Andrea</au><au>Intille, Stephen S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifier Personalization for Activity Recognition Using Wrist Accelerometers</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>23</volume><issue>4</issue><spage>1585</spage><epage>1594</epage><pages>1585-1594</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Intersubject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this paper, we propose an approach for personalizing classification rules to a single person. We demonstrate that the method improves activity detection from wrist-worn accelerometer data on a four-class recognition problem of interest to the exercise science community, where classes are ambulation, cycling, sedentary, and other. We extend a previously published activity classification method based on support vector machines so that it estimates classification uncertainty. Uncertainty is used to drive data label requests from the user, and the resulting label information is used to update the classifier. Two different datasets- one from 33 adults with 26 activity types, and another from 20 youth with 23 activity types-were used to evaluate the method using leave-one-subject-out and leave-one-groupout cross validation. The new method improved overall recognition accuracy up to 11% on average, with some large person-specific improvements (ranging from -2% to +36%). The proposed method is suitable for online implementation supporting real-time recognition systems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30222588</pmid><doi>10.1109/JBHI.2018.2869779</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0287-2553</orcidid><orcidid>https://orcid.org/0000-0003-0760-052X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2019-07, Vol.23 (4), p.1585-1594 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6639791 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerometers Accelerometry - methods Active learning Activity recognition Algorithms Classification Classification algorithms Classifiers Human Activities - classification Humans incremental learning Machine Learning personalization Signal Processing, Computer-Assisted Support Vector Machine Support vector machines Testing Training Uncertainty Wearable Electronic Devices wearable sensors Wrist Wrist - physiology |
title | Classifier Personalization for Activity Recognition Using Wrist Accelerometers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifier%20Personalization%20for%20Activity%20Recognition%20Using%20Wrist%20Accelerometers&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Mannini,%20Andrea&rft.date=2019-07-01&rft.volume=23&rft.issue=4&rft.spage=1585&rft.epage=1594&rft.pages=1585-1594&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2018.2869779&rft_dat=%3Cproquest_RIE%3E2253462106%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253462106&rft_id=info:pmid/30222588&rft_ieee_id=8462755&rfr_iscdi=true |