Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus
Summary Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant‐pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an...
Gespeichert in:
Veröffentlicht in: | Molecular plant pathology 2017-02, Vol.18 (2), p.298-307 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | 2 |
container_start_page | 298 |
container_title | Molecular plant pathology |
container_volume | 18 |
creator | Huang, Kun Caplan, Jeff Sweigard, James A. Czymmek, Kirk J. Donofrio, Nicole M. |
description | Summary
Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant‐pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H2O2) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H2O2 dynamics in real time during important stages of the plant infection process. |
doi_str_mv | 10.1111/mpp.12392 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6638257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868341497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5422-f232983ef7c8bf24ce1d29ddd65dafaabfd57d37271862f0cf24b281d3e873db3</originalsourceid><addsrcrecordid>eNp1kcFqFTEUhkOx2Fpd9AUk4EYXt52czExmNoVS1AotvQtdh0xycm_KTDImM9XrykfwGX0S0962aMFAyIF858sJPyGHrDhieR0P43jEgLewQ_YZr8sFFwV_lusy17UA2CMvUrouCiZaqJ6TPajbqoAa9km4Gic3uB9qcsHTYOm0Rnq-WWKkCX0Kkdq8Y-jmNNGIqv_981duQGpwQv3QtN6YGFbo6YgxfHcGqfN3pug00q5XudnOfjWnl2TXqj7hq_vzgHz58P7z2fni4urjp7PTi4WuSoCFBQ5tw9EK3XQWSo3MQGuMqSujrFKdNZUwXIBgTQ220JnpoGGGYyO46fgBOdl6x7kb0Gj0U1S9HKMbVNzIoJz898a7tVyFG1nXvIFKZMHbe0EMX2dMkxxc0tj3ymOYk8zvNrxkZXuLvnmCXoc5-vy9TFVtWzZVyTP1bkvpGFKKaB-HYYW8jVHmGOVdjJl9_ff0j-RDbhk43gLfXI-b_5vk5XK5Vf4BYE2qyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859948543</pqid></control><display><type>article</type><title>Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus</title><source>Wiley Online Library Open Access</source><creator>Huang, Kun ; Caplan, Jeff ; Sweigard, James A. ; Czymmek, Kirk J. ; Donofrio, Nicole M.</creator><creatorcontrib>Huang, Kun ; Caplan, Jeff ; Sweigard, James A. ; Czymmek, Kirk J. ; Donofrio, Nicole M.</creatorcontrib><description>Summary
Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant‐pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H2O2) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H2O2 dynamics in real time during important stages of the plant infection process.</description><identifier>ISSN: 1464-6722</identifier><identifier>EISSN: 1364-3703</identifier><identifier>DOI: 10.1111/mpp.12392</identifier><identifier>PMID: 26950262</identifier><identifier>CODEN: MPPAFD</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>appressorium ; Biosensing Techniques - methods ; Codon - genetics ; codon bias ; Computer Systems ; confocal imaging ; Genes ; Hordeum - microbiology ; Host Specificity ; Hydrogen Peroxide - analysis ; HyPer sensor ; Infections ; Magnaporthe - growth & development ; Magnaporthe - metabolism ; Magnaporthe oryzae ; Microscopy ; Neurospora crassa ; Optimization ; Oryza - microbiology ; Plant Diseases - microbiology ; Plant Leaves - microbiology ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; rice blast fungus ; Sensors ; Technical Advance</subject><ispartof>Molecular plant pathology, 2017-02, Vol.18 (2), p.298-307</ispartof><rights>2016 BSPP AND JOHN WILEY & SONS LTD</rights><rights>2016 BSPP AND JOHN WILEY & SONS LTD.</rights><rights>2017 BSPP AND JOHN WILEY & SONS LTD</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5422-f232983ef7c8bf24ce1d29ddd65dafaabfd57d37271862f0cf24b281d3e873db3</citedby><cites>FETCH-LOGICAL-c5422-f232983ef7c8bf24ce1d29ddd65dafaabfd57d37271862f0cf24b281d3e873db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638257/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638257/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12392$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26950262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Caplan, Jeff</creatorcontrib><creatorcontrib>Sweigard, James A.</creatorcontrib><creatorcontrib>Czymmek, Kirk J.</creatorcontrib><creatorcontrib>Donofrio, Nicole M.</creatorcontrib><title>Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus</title><title>Molecular plant pathology</title><addtitle>Mol Plant Pathol</addtitle><description>Summary
Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant‐pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H2O2) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H2O2 dynamics in real time during important stages of the plant infection process.</description><subject>appressorium</subject><subject>Biosensing Techniques - methods</subject><subject>Codon - genetics</subject><subject>codon bias</subject><subject>Computer Systems</subject><subject>confocal imaging</subject><subject>Genes</subject><subject>Hordeum - microbiology</subject><subject>Host Specificity</subject><subject>Hydrogen Peroxide - analysis</subject><subject>HyPer sensor</subject><subject>Infections</subject><subject>Magnaporthe - growth & development</subject><subject>Magnaporthe - metabolism</subject><subject>Magnaporthe oryzae</subject><subject>Microscopy</subject><subject>Neurospora crassa</subject><subject>Optimization</subject><subject>Oryza - microbiology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Leaves - microbiology</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>rice blast fungus</subject><subject>Sensors</subject><subject>Technical Advance</subject><issn>1464-6722</issn><issn>1364-3703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFqFTEUhkOx2Fpd9AUk4EYXt52czExmNoVS1AotvQtdh0xycm_KTDImM9XrykfwGX0S0962aMFAyIF858sJPyGHrDhieR0P43jEgLewQ_YZr8sFFwV_lusy17UA2CMvUrouCiZaqJ6TPajbqoAa9km4Gic3uB9qcsHTYOm0Rnq-WWKkCX0Kkdq8Y-jmNNGIqv_981duQGpwQv3QtN6YGFbo6YgxfHcGqfN3pug00q5XudnOfjWnl2TXqj7hq_vzgHz58P7z2fni4urjp7PTi4WuSoCFBQ5tw9EK3XQWSo3MQGuMqSujrFKdNZUwXIBgTQ220JnpoGGGYyO46fgBOdl6x7kb0Gj0U1S9HKMbVNzIoJz898a7tVyFG1nXvIFKZMHbe0EMX2dMkxxc0tj3ymOYk8zvNrxkZXuLvnmCXoc5-vy9TFVtWzZVyTP1bkvpGFKKaB-HYYW8jVHmGOVdjJl9_ff0j-RDbhk43gLfXI-b_5vk5XK5Vf4BYE2qyw</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Huang, Kun</creator><creator>Caplan, Jeff</creator><creator>Sweigard, James A.</creator><creator>Czymmek, Kirk J.</creator><creator>Donofrio, Nicole M.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201702</creationdate><title>Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus</title><author>Huang, Kun ; Caplan, Jeff ; Sweigard, James A. ; Czymmek, Kirk J. ; Donofrio, Nicole M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5422-f232983ef7c8bf24ce1d29ddd65dafaabfd57d37271862f0cf24b281d3e873db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>appressorium</topic><topic>Biosensing Techniques - methods</topic><topic>Codon - genetics</topic><topic>codon bias</topic><topic>Computer Systems</topic><topic>confocal imaging</topic><topic>Genes</topic><topic>Hordeum - microbiology</topic><topic>Host Specificity</topic><topic>Hydrogen Peroxide - analysis</topic><topic>HyPer sensor</topic><topic>Infections</topic><topic>Magnaporthe - growth & development</topic><topic>Magnaporthe - metabolism</topic><topic>Magnaporthe oryzae</topic><topic>Microscopy</topic><topic>Neurospora crassa</topic><topic>Optimization</topic><topic>Oryza - microbiology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Leaves - microbiology</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>rice blast fungus</topic><topic>Sensors</topic><topic>Technical Advance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Caplan, Jeff</creatorcontrib><creatorcontrib>Sweigard, James A.</creatorcontrib><creatorcontrib>Czymmek, Kirk J.</creatorcontrib><creatorcontrib>Donofrio, Nicole M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular plant pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Kun</au><au>Caplan, Jeff</au><au>Sweigard, James A.</au><au>Czymmek, Kirk J.</au><au>Donofrio, Nicole M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus</atitle><jtitle>Molecular plant pathology</jtitle><addtitle>Mol Plant Pathol</addtitle><date>2017-02</date><risdate>2017</risdate><volume>18</volume><issue>2</issue><spage>298</spage><epage>307</epage><pages>298-307</pages><issn>1464-6722</issn><eissn>1364-3703</eissn><coden>MPPAFD</coden><abstract>Summary
Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant‐pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H2O2) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H2O2 dynamics in real time during important stages of the plant infection process.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>26950262</pmid><doi>10.1111/mpp.12392</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1464-6722 |
ispartof | Molecular plant pathology, 2017-02, Vol.18 (2), p.298-307 |
issn | 1464-6722 1364-3703 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6638257 |
source | Wiley Online Library Open Access |
subjects | appressorium Biosensing Techniques - methods Codon - genetics codon bias Computer Systems confocal imaging Genes Hordeum - microbiology Host Specificity Hydrogen Peroxide - analysis HyPer sensor Infections Magnaporthe - growth & development Magnaporthe - metabolism Magnaporthe oryzae Microscopy Neurospora crassa Optimization Oryza - microbiology Plant Diseases - microbiology Plant Leaves - microbiology reactive oxygen species Reactive Oxygen Species - metabolism rice blast fungus Sensors Technical Advance |
title | Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20HyPer%20sensor%20for%20robust%20real%E2%80%90time%20detection%20of%20hydrogen%20peroxide%20in%20the%20rice%20blast%20fungus&rft.jtitle=Molecular%20plant%20pathology&rft.au=Huang,%20Kun&rft.date=2017-02&rft.volume=18&rft.issue=2&rft.spage=298&rft.epage=307&rft.pages=298-307&rft.issn=1464-6722&rft.eissn=1364-3703&rft.coden=MPPAFD&rft_id=info:doi/10.1111/mpp.12392&rft_dat=%3Cproquest_24P%3E1868341497%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859948543&rft_id=info:pmid/26950262&rfr_iscdi=true |