Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus

Summary Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant‐pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant pathology 2017-02, Vol.18 (2), p.298-307
Hauptverfasser: Huang, Kun, Caplan, Jeff, Sweigard, James A., Czymmek, Kirk J., Donofrio, Nicole M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 2
container_start_page 298
container_title Molecular plant pathology
container_volume 18
creator Huang, Kun
Caplan, Jeff
Sweigard, James A.
Czymmek, Kirk J.
Donofrio, Nicole M.
description Summary Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant‐pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H2O2) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H2O2 dynamics in real time during important stages of the plant infection process.
doi_str_mv 10.1111/mpp.12392
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6638257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868341497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5422-f232983ef7c8bf24ce1d29ddd65dafaabfd57d37271862f0cf24b281d3e873db3</originalsourceid><addsrcrecordid>eNp1kcFqFTEUhkOx2Fpd9AUk4EYXt52czExmNoVS1AotvQtdh0xycm_KTDImM9XrykfwGX0S0962aMFAyIF858sJPyGHrDhieR0P43jEgLewQ_YZr8sFFwV_lusy17UA2CMvUrouCiZaqJ6TPajbqoAa9km4Gic3uB9qcsHTYOm0Rnq-WWKkCX0Kkdq8Y-jmNNGIqv_981duQGpwQv3QtN6YGFbo6YgxfHcGqfN3pug00q5XudnOfjWnl2TXqj7hq_vzgHz58P7z2fni4urjp7PTi4WuSoCFBQ5tw9EK3XQWSo3MQGuMqSujrFKdNZUwXIBgTQ220JnpoGGGYyO46fgBOdl6x7kb0Gj0U1S9HKMbVNzIoJz898a7tVyFG1nXvIFKZMHbe0EMX2dMkxxc0tj3ymOYk8zvNrxkZXuLvnmCXoc5-vy9TFVtWzZVyTP1bkvpGFKKaB-HYYW8jVHmGOVdjJl9_ff0j-RDbhk43gLfXI-b_5vk5XK5Vf4BYE2qyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859948543</pqid></control><display><type>article</type><title>Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus</title><source>Wiley Online Library Open Access</source><creator>Huang, Kun ; Caplan, Jeff ; Sweigard, James A. ; Czymmek, Kirk J. ; Donofrio, Nicole M.</creator><creatorcontrib>Huang, Kun ; Caplan, Jeff ; Sweigard, James A. ; Czymmek, Kirk J. ; Donofrio, Nicole M.</creatorcontrib><description>Summary Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant‐pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H2O2) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H2O2 dynamics in real time during important stages of the plant infection process.</description><identifier>ISSN: 1464-6722</identifier><identifier>EISSN: 1364-3703</identifier><identifier>DOI: 10.1111/mpp.12392</identifier><identifier>PMID: 26950262</identifier><identifier>CODEN: MPPAFD</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>appressorium ; Biosensing Techniques - methods ; Codon - genetics ; codon bias ; Computer Systems ; confocal imaging ; Genes ; Hordeum - microbiology ; Host Specificity ; Hydrogen Peroxide - analysis ; HyPer sensor ; Infections ; Magnaporthe - growth &amp; development ; Magnaporthe - metabolism ; Magnaporthe oryzae ; Microscopy ; Neurospora crassa ; Optimization ; Oryza - microbiology ; Plant Diseases - microbiology ; Plant Leaves - microbiology ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; rice blast fungus ; Sensors ; Technical Advance</subject><ispartof>Molecular plant pathology, 2017-02, Vol.18 (2), p.298-307</ispartof><rights>2016 BSPP AND JOHN WILEY &amp; SONS LTD</rights><rights>2016 BSPP AND JOHN WILEY &amp; SONS LTD.</rights><rights>2017 BSPP AND JOHN WILEY &amp; SONS LTD</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5422-f232983ef7c8bf24ce1d29ddd65dafaabfd57d37271862f0cf24b281d3e873db3</citedby><cites>FETCH-LOGICAL-c5422-f232983ef7c8bf24ce1d29ddd65dafaabfd57d37271862f0cf24b281d3e873db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638257/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638257/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12392$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26950262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Caplan, Jeff</creatorcontrib><creatorcontrib>Sweigard, James A.</creatorcontrib><creatorcontrib>Czymmek, Kirk J.</creatorcontrib><creatorcontrib>Donofrio, Nicole M.</creatorcontrib><title>Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus</title><title>Molecular plant pathology</title><addtitle>Mol Plant Pathol</addtitle><description>Summary Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant‐pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H2O2) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H2O2 dynamics in real time during important stages of the plant infection process.</description><subject>appressorium</subject><subject>Biosensing Techniques - methods</subject><subject>Codon - genetics</subject><subject>codon bias</subject><subject>Computer Systems</subject><subject>confocal imaging</subject><subject>Genes</subject><subject>Hordeum - microbiology</subject><subject>Host Specificity</subject><subject>Hydrogen Peroxide - analysis</subject><subject>HyPer sensor</subject><subject>Infections</subject><subject>Magnaporthe - growth &amp; development</subject><subject>Magnaporthe - metabolism</subject><subject>Magnaporthe oryzae</subject><subject>Microscopy</subject><subject>Neurospora crassa</subject><subject>Optimization</subject><subject>Oryza - microbiology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Leaves - microbiology</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>rice blast fungus</subject><subject>Sensors</subject><subject>Technical Advance</subject><issn>1464-6722</issn><issn>1364-3703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFqFTEUhkOx2Fpd9AUk4EYXt52czExmNoVS1AotvQtdh0xycm_KTDImM9XrykfwGX0S0962aMFAyIF858sJPyGHrDhieR0P43jEgLewQ_YZr8sFFwV_lusy17UA2CMvUrouCiZaqJ6TPajbqoAa9km4Gic3uB9qcsHTYOm0Rnq-WWKkCX0Kkdq8Y-jmNNGIqv_981duQGpwQv3QtN6YGFbo6YgxfHcGqfN3pug00q5XudnOfjWnl2TXqj7hq_vzgHz58P7z2fni4urjp7PTi4WuSoCFBQ5tw9EK3XQWSo3MQGuMqSujrFKdNZUwXIBgTQ220JnpoGGGYyO46fgBOdl6x7kb0Gj0U1S9HKMbVNzIoJz898a7tVyFG1nXvIFKZMHbe0EMX2dMkxxc0tj3ymOYk8zvNrxkZXuLvnmCXoc5-vy9TFVtWzZVyTP1bkvpGFKKaB-HYYW8jVHmGOVdjJl9_ff0j-RDbhk43gLfXI-b_5vk5XK5Vf4BYE2qyw</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Huang, Kun</creator><creator>Caplan, Jeff</creator><creator>Sweigard, James A.</creator><creator>Czymmek, Kirk J.</creator><creator>Donofrio, Nicole M.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201702</creationdate><title>Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus</title><author>Huang, Kun ; Caplan, Jeff ; Sweigard, James A. ; Czymmek, Kirk J. ; Donofrio, Nicole M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5422-f232983ef7c8bf24ce1d29ddd65dafaabfd57d37271862f0cf24b281d3e873db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>appressorium</topic><topic>Biosensing Techniques - methods</topic><topic>Codon - genetics</topic><topic>codon bias</topic><topic>Computer Systems</topic><topic>confocal imaging</topic><topic>Genes</topic><topic>Hordeum - microbiology</topic><topic>Host Specificity</topic><topic>Hydrogen Peroxide - analysis</topic><topic>HyPer sensor</topic><topic>Infections</topic><topic>Magnaporthe - growth &amp; development</topic><topic>Magnaporthe - metabolism</topic><topic>Magnaporthe oryzae</topic><topic>Microscopy</topic><topic>Neurospora crassa</topic><topic>Optimization</topic><topic>Oryza - microbiology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Leaves - microbiology</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>rice blast fungus</topic><topic>Sensors</topic><topic>Technical Advance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Caplan, Jeff</creatorcontrib><creatorcontrib>Sweigard, James A.</creatorcontrib><creatorcontrib>Czymmek, Kirk J.</creatorcontrib><creatorcontrib>Donofrio, Nicole M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular plant pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Kun</au><au>Caplan, Jeff</au><au>Sweigard, James A.</au><au>Czymmek, Kirk J.</au><au>Donofrio, Nicole M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus</atitle><jtitle>Molecular plant pathology</jtitle><addtitle>Mol Plant Pathol</addtitle><date>2017-02</date><risdate>2017</risdate><volume>18</volume><issue>2</issue><spage>298</spage><epage>307</epage><pages>298-307</pages><issn>1464-6722</issn><eissn>1364-3703</eissn><coden>MPPAFD</coden><abstract>Summary Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant‐pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H2O2) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H2O2 dynamics in real time during important stages of the plant infection process.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>26950262</pmid><doi>10.1111/mpp.12392</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1464-6722
ispartof Molecular plant pathology, 2017-02, Vol.18 (2), p.298-307
issn 1464-6722
1364-3703
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6638257
source Wiley Online Library Open Access
subjects appressorium
Biosensing Techniques - methods
Codon - genetics
codon bias
Computer Systems
confocal imaging
Genes
Hordeum - microbiology
Host Specificity
Hydrogen Peroxide - analysis
HyPer sensor
Infections
Magnaporthe - growth & development
Magnaporthe - metabolism
Magnaporthe oryzae
Microscopy
Neurospora crassa
Optimization
Oryza - microbiology
Plant Diseases - microbiology
Plant Leaves - microbiology
reactive oxygen species
Reactive Oxygen Species - metabolism
rice blast fungus
Sensors
Technical Advance
title Optimization of the HyPer sensor for robust real‐time detection of hydrogen peroxide in the rice blast fungus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20HyPer%20sensor%20for%20robust%20real%E2%80%90time%20detection%20of%20hydrogen%20peroxide%20in%20the%20rice%20blast%20fungus&rft.jtitle=Molecular%20plant%20pathology&rft.au=Huang,%20Kun&rft.date=2017-02&rft.volume=18&rft.issue=2&rft.spage=298&rft.epage=307&rft.pages=298-307&rft.issn=1464-6722&rft.eissn=1364-3703&rft.coden=MPPAFD&rft_id=info:doi/10.1111/mpp.12392&rft_dat=%3Cproquest_24P%3E1868341497%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859948543&rft_id=info:pmid/26950262&rfr_iscdi=true