Transcript‐level expression control of plant NLR genes
Summary Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector‐triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is...
Gespeichert in:
Veröffentlicht in: | Molecular plant pathology 2018-05, Vol.19 (5), p.1267-1281 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1281 |
---|---|
container_issue | 5 |
container_start_page | 1267 |
container_title | Molecular plant pathology |
container_volume | 19 |
creator | Lai, Yan Eulgem, Thomas |
description | Summary
Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector‐triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript‐level expression control. Multiple mechanistic steps, including transcription as well as co‐/post‐transcriptional processing and transcript turn‐over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations. |
doi_str_mv | 10.1111/mpp.12607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6638128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023519950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5097-cac1153c7379937e7fa25ab370afde0917c8c63986240bc550dcf108118563e83</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlYXvoAMuHIxbS6Ty2wEKd6gapG6DmmaqVOmkzGZVrvzEXxGn8TUqUUXZpMD5-M7Pz8Axwh2UXi9eVV1EWaQ74A2IiyJCYdkN8xJmBnHuAUOvJ9BiHiK6T5oYSFIgihpAzFyqvTa5VX9-f5RmKUpIvNWOeN9bstI27J2tohsFlWFKuvofvAYTU1p_CHYy1ThzdHm74Cnq8tR_yYePFzf9i8GsaYw5bFWGoVDmhOepoQbnilM1TgEVNnEwBRxLTQjqWA4gWNNKZzoDEGBkKCMGEE64LzxVovx3Ey0CYFUISuXz5VbSaty-XdT5s9yapeSMSIQXgtONwJnXxbG13JmF64MmSWGmFCUphQG6qyhtLPeO5NtLyAo1yXLULL8LjmwJ78jbcmfVgPQa4DXvDCr_03ybjhslF98-Ybp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023519950</pqid></control><display><type>article</type><title>Transcript‐level expression control of plant NLR genes</title><source>Wiley Online Library (Open Access Collection)</source><creator>Lai, Yan ; Eulgem, Thomas</creator><creatorcontrib>Lai, Yan ; Eulgem, Thomas</creatorcontrib><description>Summary
Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector‐triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript‐level expression control. Multiple mechanistic steps, including transcription as well as co‐/post‐transcriptional processing and transcript turn‐over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations.</description><identifier>ISSN: 1464-6722</identifier><identifier>EISSN: 1364-3703</identifier><identifier>DOI: 10.1111/mpp.12607</identifier><identifier>PMID: 28834153</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>alternative polyadenylation ; alternative splicing ; Alternative Splicing - genetics ; Autoimmunity ; Chromatin - metabolism ; Evolution, Molecular ; Fitness ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant ; Immunity ; NLR Proteins - genetics ; NLR Proteins - metabolism ; nonsense‐mediated decay ; plant disease resistance genes ; post‐transcriptional regulation ; Receptors ; Reproductive fitness ; Review ; Reviews ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; small RNAs ; Transcription ; transcriptional regulation</subject><ispartof>Molecular plant pathology, 2018-05, Vol.19 (5), p.1267-1281</ispartof><rights>2017 BSPP AND JOHN WILEY & SONS LTD</rights><rights>2017 BSPP AND JOHN WILEY & SONS LTD.</rights><rights>2018 BSPP AND JOHN WILEY & SONS LTD</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5097-cac1153c7379937e7fa25ab370afde0917c8c63986240bc550dcf108118563e83</citedby><cites>FETCH-LOGICAL-c5097-cac1153c7379937e7fa25ab370afde0917c8c63986240bc550dcf108118563e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638128/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638128/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,1419,11569,27931,27932,45581,45582,46059,46483,53798,53800</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12607$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28834153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Yan</creatorcontrib><creatorcontrib>Eulgem, Thomas</creatorcontrib><title>Transcript‐level expression control of plant NLR genes</title><title>Molecular plant pathology</title><addtitle>Mol Plant Pathol</addtitle><description>Summary
Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector‐triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript‐level expression control. Multiple mechanistic steps, including transcription as well as co‐/post‐transcriptional processing and transcript turn‐over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations.</description><subject>alternative polyadenylation</subject><subject>alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Autoimmunity</subject><subject>Chromatin - metabolism</subject><subject>Evolution, Molecular</subject><subject>Fitness</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Immunity</subject><subject>NLR Proteins - genetics</subject><subject>NLR Proteins - metabolism</subject><subject>nonsense‐mediated decay</subject><subject>plant disease resistance genes</subject><subject>post‐transcriptional regulation</subject><subject>Receptors</subject><subject>Reproductive fitness</subject><subject>Review</subject><subject>Reviews</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>small RNAs</subject><subject>Transcription</subject><subject>transcriptional regulation</subject><issn>1464-6722</issn><issn>1364-3703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKAzEUhoMotlYXvoAMuHIxbS6Ty2wEKd6gapG6DmmaqVOmkzGZVrvzEXxGn8TUqUUXZpMD5-M7Pz8Axwh2UXi9eVV1EWaQ74A2IiyJCYdkN8xJmBnHuAUOvJ9BiHiK6T5oYSFIgihpAzFyqvTa5VX9-f5RmKUpIvNWOeN9bstI27J2tohsFlWFKuvofvAYTU1p_CHYy1ThzdHm74Cnq8tR_yYePFzf9i8GsaYw5bFWGoVDmhOepoQbnilM1TgEVNnEwBRxLTQjqWA4gWNNKZzoDEGBkKCMGEE64LzxVovx3Ey0CYFUISuXz5VbSaty-XdT5s9yapeSMSIQXgtONwJnXxbG13JmF64MmSWGmFCUphQG6qyhtLPeO5NtLyAo1yXLULL8LjmwJ78jbcmfVgPQa4DXvDCr_03ybjhslF98-Ybp</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Lai, Yan</creator><creator>Eulgem, Thomas</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201805</creationdate><title>Transcript‐level expression control of plant NLR genes</title><author>Lai, Yan ; Eulgem, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5097-cac1153c7379937e7fa25ab370afde0917c8c63986240bc550dcf108118563e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>alternative polyadenylation</topic><topic>alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Autoimmunity</topic><topic>Chromatin - metabolism</topic><topic>Evolution, Molecular</topic><topic>Fitness</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Immunity</topic><topic>NLR Proteins - genetics</topic><topic>NLR Proteins - metabolism</topic><topic>nonsense‐mediated decay</topic><topic>plant disease resistance genes</topic><topic>post‐transcriptional regulation</topic><topic>Receptors</topic><topic>Reproductive fitness</topic><topic>Review</topic><topic>Reviews</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>small RNAs</topic><topic>Transcription</topic><topic>transcriptional regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Yan</creatorcontrib><creatorcontrib>Eulgem, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular plant pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lai, Yan</au><au>Eulgem, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcript‐level expression control of plant NLR genes</atitle><jtitle>Molecular plant pathology</jtitle><addtitle>Mol Plant Pathol</addtitle><date>2018-05</date><risdate>2018</risdate><volume>19</volume><issue>5</issue><spage>1267</spage><epage>1281</epage><pages>1267-1281</pages><issn>1464-6722</issn><eissn>1364-3703</eissn><abstract>Summary
Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector‐triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript‐level expression control. Multiple mechanistic steps, including transcription as well as co‐/post‐transcriptional processing and transcript turn‐over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>28834153</pmid><doi>10.1111/mpp.12607</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1464-6722 |
ispartof | Molecular plant pathology, 2018-05, Vol.19 (5), p.1267-1281 |
issn | 1464-6722 1364-3703 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6638128 |
source | Wiley Online Library (Open Access Collection) |
subjects | alternative polyadenylation alternative splicing Alternative Splicing - genetics Autoimmunity Chromatin - metabolism Evolution, Molecular Fitness Gene expression Gene Expression Regulation, Plant Genes Genes, Plant Immunity NLR Proteins - genetics NLR Proteins - metabolism nonsense‐mediated decay plant disease resistance genes post‐transcriptional regulation Receptors Reproductive fitness Review Reviews RNA, Messenger - genetics RNA, Messenger - metabolism small RNAs Transcription transcriptional regulation |
title | Transcript‐level expression control of plant NLR genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T06%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcript%E2%80%90level%20expression%20control%20of%20plant%20NLR%20genes&rft.jtitle=Molecular%20plant%20pathology&rft.au=Lai,%20Yan&rft.date=2018-05&rft.volume=19&rft.issue=5&rft.spage=1267&rft.epage=1281&rft.pages=1267-1281&rft.issn=1464-6722&rft.eissn=1364-3703&rft_id=info:doi/10.1111/mpp.12607&rft_dat=%3Cproquest_24P%3E2023519950%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023519950&rft_id=info:pmid/28834153&rfr_iscdi=true |