Transcript‐level expression control of plant NLR genes

Summary Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector‐triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant pathology 2018-05, Vol.19 (5), p.1267-1281
Hauptverfasser: Lai, Yan, Eulgem, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1281
container_issue 5
container_start_page 1267
container_title Molecular plant pathology
container_volume 19
creator Lai, Yan
Eulgem, Thomas
description Summary Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector‐triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript‐level expression control. Multiple mechanistic steps, including transcription as well as co‐/post‐transcriptional processing and transcript turn‐over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations.
doi_str_mv 10.1111/mpp.12607
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6638128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023519950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5097-cac1153c7379937e7fa25ab370afde0917c8c63986240bc550dcf108118563e83</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlYXvoAMuHIxbS6Ty2wEKd6gapG6DmmaqVOmkzGZVrvzEXxGn8TUqUUXZpMD5-M7Pz8Axwh2UXi9eVV1EWaQ74A2IiyJCYdkN8xJmBnHuAUOvJ9BiHiK6T5oYSFIgihpAzFyqvTa5VX9-f5RmKUpIvNWOeN9bstI27J2tohsFlWFKuvofvAYTU1p_CHYy1ThzdHm74Cnq8tR_yYePFzf9i8GsaYw5bFWGoVDmhOepoQbnilM1TgEVNnEwBRxLTQjqWA4gWNNKZzoDEGBkKCMGEE64LzxVovx3Ey0CYFUISuXz5VbSaty-XdT5s9yapeSMSIQXgtONwJnXxbG13JmF64MmSWGmFCUphQG6qyhtLPeO5NtLyAo1yXLULL8LjmwJ78jbcmfVgPQa4DXvDCr_03ybjhslF98-Ybp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023519950</pqid></control><display><type>article</type><title>Transcript‐level expression control of plant NLR genes</title><source>Wiley Online Library (Open Access Collection)</source><creator>Lai, Yan ; Eulgem, Thomas</creator><creatorcontrib>Lai, Yan ; Eulgem, Thomas</creatorcontrib><description>Summary Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector‐triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript‐level expression control. Multiple mechanistic steps, including transcription as well as co‐/post‐transcriptional processing and transcript turn‐over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations.</description><identifier>ISSN: 1464-6722</identifier><identifier>EISSN: 1364-3703</identifier><identifier>DOI: 10.1111/mpp.12607</identifier><identifier>PMID: 28834153</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>alternative polyadenylation ; alternative splicing ; Alternative Splicing - genetics ; Autoimmunity ; Chromatin - metabolism ; Evolution, Molecular ; Fitness ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant ; Immunity ; NLR Proteins - genetics ; NLR Proteins - metabolism ; nonsense‐mediated decay ; plant disease resistance genes ; post‐transcriptional regulation ; Receptors ; Reproductive fitness ; Review ; Reviews ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; small RNAs ; Transcription ; transcriptional regulation</subject><ispartof>Molecular plant pathology, 2018-05, Vol.19 (5), p.1267-1281</ispartof><rights>2017 BSPP AND JOHN WILEY &amp; SONS LTD</rights><rights>2017 BSPP AND JOHN WILEY &amp; SONS LTD.</rights><rights>2018 BSPP AND JOHN WILEY &amp; SONS LTD</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5097-cac1153c7379937e7fa25ab370afde0917c8c63986240bc550dcf108118563e83</citedby><cites>FETCH-LOGICAL-c5097-cac1153c7379937e7fa25ab370afde0917c8c63986240bc550dcf108118563e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638128/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638128/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,1419,11569,27931,27932,45581,45582,46059,46483,53798,53800</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12607$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28834153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Yan</creatorcontrib><creatorcontrib>Eulgem, Thomas</creatorcontrib><title>Transcript‐level expression control of plant NLR genes</title><title>Molecular plant pathology</title><addtitle>Mol Plant Pathol</addtitle><description>Summary Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector‐triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript‐level expression control. Multiple mechanistic steps, including transcription as well as co‐/post‐transcriptional processing and transcript turn‐over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations.</description><subject>alternative polyadenylation</subject><subject>alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Autoimmunity</subject><subject>Chromatin - metabolism</subject><subject>Evolution, Molecular</subject><subject>Fitness</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Immunity</subject><subject>NLR Proteins - genetics</subject><subject>NLR Proteins - metabolism</subject><subject>nonsense‐mediated decay</subject><subject>plant disease resistance genes</subject><subject>post‐transcriptional regulation</subject><subject>Receptors</subject><subject>Reproductive fitness</subject><subject>Review</subject><subject>Reviews</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>small RNAs</subject><subject>Transcription</subject><subject>transcriptional regulation</subject><issn>1464-6722</issn><issn>1364-3703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKAzEUhoMotlYXvoAMuHIxbS6Ty2wEKd6gapG6DmmaqVOmkzGZVrvzEXxGn8TUqUUXZpMD5-M7Pz8Axwh2UXi9eVV1EWaQ74A2IiyJCYdkN8xJmBnHuAUOvJ9BiHiK6T5oYSFIgihpAzFyqvTa5VX9-f5RmKUpIvNWOeN9bstI27J2tohsFlWFKuvofvAYTU1p_CHYy1ThzdHm74Cnq8tR_yYePFzf9i8GsaYw5bFWGoVDmhOepoQbnilM1TgEVNnEwBRxLTQjqWA4gWNNKZzoDEGBkKCMGEE64LzxVovx3Ey0CYFUISuXz5VbSaty-XdT5s9yapeSMSIQXgtONwJnXxbG13JmF64MmSWGmFCUphQG6qyhtLPeO5NtLyAo1yXLULL8LjmwJ78jbcmfVgPQa4DXvDCr_03ybjhslF98-Ybp</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Lai, Yan</creator><creator>Eulgem, Thomas</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201805</creationdate><title>Transcript‐level expression control of plant NLR genes</title><author>Lai, Yan ; Eulgem, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5097-cac1153c7379937e7fa25ab370afde0917c8c63986240bc550dcf108118563e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>alternative polyadenylation</topic><topic>alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Autoimmunity</topic><topic>Chromatin - metabolism</topic><topic>Evolution, Molecular</topic><topic>Fitness</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Immunity</topic><topic>NLR Proteins - genetics</topic><topic>NLR Proteins - metabolism</topic><topic>nonsense‐mediated decay</topic><topic>plant disease resistance genes</topic><topic>post‐transcriptional regulation</topic><topic>Receptors</topic><topic>Reproductive fitness</topic><topic>Review</topic><topic>Reviews</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>small RNAs</topic><topic>Transcription</topic><topic>transcriptional regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Yan</creatorcontrib><creatorcontrib>Eulgem, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular plant pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lai, Yan</au><au>Eulgem, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcript‐level expression control of plant NLR genes</atitle><jtitle>Molecular plant pathology</jtitle><addtitle>Mol Plant Pathol</addtitle><date>2018-05</date><risdate>2018</risdate><volume>19</volume><issue>5</issue><spage>1267</spage><epage>1281</epage><pages>1267-1281</pages><issn>1464-6722</issn><eissn>1364-3703</eissn><abstract>Summary Plant NLR genes encode sensitive immune receptors that can mediate the specific recognition of pathogen avirulence effectors and activate a strong defence response, termed effector‐triggered immunity. The expression of NLRs requires strict regulation, as their ability to trigger immunity is dependent on their dose, and overexpression of NLRs results in autoimmunity and massive fitness costs. An elaborate interplay of different mechanisms controlling NLR transcript levels allows plants to maximize their defence capacity, whilst limiting negative impact on their fitness. Global suppression of NLR transcripts may be a prerequisite for the fast evolution of new NLR variants and the expansion of this gene family. Here, we summarize recent progress made towards a comprehensive understanding of NLR transcript‐level expression control. Multiple mechanistic steps, including transcription as well as co‐/post‐transcriptional processing and transcript turn‐over, contribute to balanced base levels of NLR transcripts and allow for dynamic adjustments to defence situations.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>28834153</pmid><doi>10.1111/mpp.12607</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1464-6722
ispartof Molecular plant pathology, 2018-05, Vol.19 (5), p.1267-1281
issn 1464-6722
1364-3703
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6638128
source Wiley Online Library (Open Access Collection)
subjects alternative polyadenylation
alternative splicing
Alternative Splicing - genetics
Autoimmunity
Chromatin - metabolism
Evolution, Molecular
Fitness
Gene expression
Gene Expression Regulation, Plant
Genes
Genes, Plant
Immunity
NLR Proteins - genetics
NLR Proteins - metabolism
nonsense‐mediated decay
plant disease resistance genes
post‐transcriptional regulation
Receptors
Reproductive fitness
Review
Reviews
RNA, Messenger - genetics
RNA, Messenger - metabolism
small RNAs
Transcription
transcriptional regulation
title Transcript‐level expression control of plant NLR genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T06%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcript%E2%80%90level%20expression%20control%20of%20plant%20NLR%20genes&rft.jtitle=Molecular%20plant%20pathology&rft.au=Lai,%20Yan&rft.date=2018-05&rft.volume=19&rft.issue=5&rft.spage=1267&rft.epage=1281&rft.pages=1267-1281&rft.issn=1464-6722&rft.eissn=1364-3703&rft_id=info:doi/10.1111/mpp.12607&rft_dat=%3Cproquest_24P%3E2023519950%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023519950&rft_id=info:pmid/28834153&rfr_iscdi=true