CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions

CRISPR–Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4 + T cells to create a high-throughput platform for analyzing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2019-01, Vol.14 (1), p.1-27
Hauptverfasser: Hultquist, Judd F., Hiatt, Joseph, Schumann, Kathrin, McGregor, Michael J., Roth, Theodore L., Haas, Paige, Doudna, Jennifer A., Marson, Alexander, Krogan, Nevan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 1
container_title Nature protocols
container_volume 14
creator Hultquist, Judd F.
Hiatt, Joseph
Schumann, Kathrin
McGregor, Michael J.
Roth, Theodore L.
Haas, Paige
Doudna, Jennifer A.
Marson, Alexander
Krogan, Nevan J.
description CRISPR–Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4 + T cells to create a high-throughput platform for analyzing the role of host factors in HIV infection and pathogenesis. Briefly, CRISPR–Cas9 ribonucleoproteins (crRNPs) are synthesized in vitro and delivered to activated CD4 + T cells by nucleofection. These cells are then assayed for editing efficiency and expanded for use in downstream cellular, genetic, or protein-based assays. This platform supports the rapid, arrayed generation of multiple gene manipulations and is widely adaptable across culture conditions, infection protocols, and downstream applications. Here, we present detailed protocols for crRNP synthesis, primary T-cell culture, 96-well nucleofection, molecular validation, and HIV infection, and discuss additional considerations for guide and screen design, as well as crRNP multiplexing. Taken together, this procedure allows high-throughput identification and mechanistic interrogation of HIV host factors in primary CD4 + T cells by gene knockout, validation, and HIV spreading infection in as little as 2–3 weeks. In this protocol, the authors describe how to design, synthesize, and deliver CRISPR–Cas9 RNPs to primary CD4 + T cells for targeted gene knockout. They then show how the edited cells can be used for the analysis of host factors in HIV replication.
doi_str_mv 10.1038/s41596-018-0069-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6637941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158542536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-317e20c8652be0d091d16032d9851dd388f696b14f0f136f902fec36121be7683</originalsourceid><addsrcrecordid>eNp1kc1uEzEQx60K1JbSB-gFWeKIFjz2-uuCVC0fjVSJqhSu1mZ3vNkqsVN7g8SNd-ANeRKcJhQ49OSR_Jv_zOhHyBmw18CEeZNrkFZVDEzFmLKVPiDHoCWruLb2yX1dVxyMPSLPcr5lrNZC6UNyJJiUVmhxTNbN9ezz1fWvHz-bNls6YIgrpBiGMSCmMQw0erpO46pN32nzrn5Fb2iHy2WmPiY6LZCOYcKU4tBOYwxb-mL2tcQtYp6ob7upYPdIKQuQn5Onvl1mPN2_J-TLh_c3zUV1-enjrDm_rLpas6kSoJGzzijJ58h6ZqEHxQTvrZHQ98IYr6yaQ-2ZB6G8ZdxjJxRwmKNWRpyQt7vc9Wa-wr7DMKV26fanuNiO7v-fMC7cEL85pYS2NZSAl_uAFO82mCd3GzcplJ0dB2lkzaVQhYId1aWYc0L_MAGY20pyO0muSHJbSU6Xnhf_rvbQ8cdKAfgOyOutAkx_Rz-e-hsCO566</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158542536</pqid></control><display><type>article</type><title>CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Hultquist, Judd F. ; Hiatt, Joseph ; Schumann, Kathrin ; McGregor, Michael J. ; Roth, Theodore L. ; Haas, Paige ; Doudna, Jennifer A. ; Marson, Alexander ; Krogan, Nevan J.</creator><creatorcontrib>Hultquist, Judd F. ; Hiatt, Joseph ; Schumann, Kathrin ; McGregor, Michael J. ; Roth, Theodore L. ; Haas, Paige ; Doudna, Jennifer A. ; Marson, Alexander ; Krogan, Nevan J.</creatorcontrib><description>CRISPR–Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4 + T cells to create a high-throughput platform for analyzing the role of host factors in HIV infection and pathogenesis. Briefly, CRISPR–Cas9 ribonucleoproteins (crRNPs) are synthesized in vitro and delivered to activated CD4 + T cells by nucleofection. These cells are then assayed for editing efficiency and expanded for use in downstream cellular, genetic, or protein-based assays. This platform supports the rapid, arrayed generation of multiple gene manipulations and is widely adaptable across culture conditions, infection protocols, and downstream applications. Here, we present detailed protocols for crRNP synthesis, primary T-cell culture, 96-well nucleofection, molecular validation, and HIV infection, and discuss additional considerations for guide and screen design, as well as crRNP multiplexing. Taken together, this procedure allows high-throughput identification and mechanistic interrogation of HIV host factors in primary CD4 + T cells by gene knockout, validation, and HIV spreading infection in as little as 2–3 weeks. In this protocol, the authors describe how to design, synthesize, and deliver CRISPR–Cas9 RNPs to primary CD4 + T cells for targeted gene knockout. They then show how the edited cells can be used for the analysis of host factors in HIV replication.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-018-0069-7</identifier><identifier>PMID: 30559373</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/4041 ; 631/326/596/2557 ; Analytical Chemistry ; Antibodies - pharmacology ; Antigens, CD - genetics ; Antigens, CD - immunology ; Biological activity ; Biological Techniques ; Biomedical and Life Sciences ; Biotechnology ; CD4 antigen ; CD4-Positive T-Lymphocytes - drug effects ; CD4-Positive T-Lymphocytes - immunology ; CD4-Positive T-Lymphocytes - metabolism ; CD4-Positive T-Lymphocytes - virology ; Cell culture ; Cell Nucleus - drug effects ; Cell Nucleus - immunology ; Cell Nucleus - metabolism ; Cell Nucleus - virology ; Chemical synthesis ; Clustered Regularly Interspaced Short Palindromic Repeats ; Computational Biology/Bioinformatics ; CRISPR ; CRISPR-Associated Protein 9 - genetics ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas Systems ; Electroporation - methods ; Gene Editing - methods ; Genetic modification ; Genome editing ; Genome, Human ; Genomes ; High-Throughput Screening Assays ; HIV ; HIV-1 - genetics ; HIV-1 - immunology ; Host-Pathogen Interactions - genetics ; Host-Pathogen Interactions - immunology ; Human immunodeficiency virus ; Humans ; Infections ; Interrogation ; Life Sciences ; Lymphocyte Activation ; Lymphocytes ; Lymphocytes T ; Microarrays ; Multiplexing ; Organic Chemistry ; Pathogenesis ; Primary Cell Culture ; Proteins ; Protocol ; Questioning ; Ribonucleoproteins ; Ribonucleoproteins - genetics ; Ribonucleoproteins - immunology ; RNA, Guide, CRISPR-Cas Systems - genetics ; RNA, Guide, CRISPR-Cas Systems - metabolism ; Transfection</subject><ispartof>Nature protocols, 2019-01, Vol.14 (1), p.1-27</ispartof><rights>Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-317e20c8652be0d091d16032d9851dd388f696b14f0f136f902fec36121be7683</citedby><cites>FETCH-LOGICAL-c470t-317e20c8652be0d091d16032d9851dd388f696b14f0f136f902fec36121be7683</cites><orcidid>0000-0002-3970-9573 ; 0000-0001-9161-999X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41596-018-0069-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41596-018-0069-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30559373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hultquist, Judd F.</creatorcontrib><creatorcontrib>Hiatt, Joseph</creatorcontrib><creatorcontrib>Schumann, Kathrin</creatorcontrib><creatorcontrib>McGregor, Michael J.</creatorcontrib><creatorcontrib>Roth, Theodore L.</creatorcontrib><creatorcontrib>Haas, Paige</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><creatorcontrib>Marson, Alexander</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><title>CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>CRISPR–Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4 + T cells to create a high-throughput platform for analyzing the role of host factors in HIV infection and pathogenesis. Briefly, CRISPR–Cas9 ribonucleoproteins (crRNPs) are synthesized in vitro and delivered to activated CD4 + T cells by nucleofection. These cells are then assayed for editing efficiency and expanded for use in downstream cellular, genetic, or protein-based assays. This platform supports the rapid, arrayed generation of multiple gene manipulations and is widely adaptable across culture conditions, infection protocols, and downstream applications. Here, we present detailed protocols for crRNP synthesis, primary T-cell culture, 96-well nucleofection, molecular validation, and HIV infection, and discuss additional considerations for guide and screen design, as well as crRNP multiplexing. Taken together, this procedure allows high-throughput identification and mechanistic interrogation of HIV host factors in primary CD4 + T cells by gene knockout, validation, and HIV spreading infection in as little as 2–3 weeks. In this protocol, the authors describe how to design, synthesize, and deliver CRISPR–Cas9 RNPs to primary CD4 + T cells for targeted gene knockout. They then show how the edited cells can be used for the analysis of host factors in HIV replication.</description><subject>631/208/4041</subject><subject>631/326/596/2557</subject><subject>Analytical Chemistry</subject><subject>Antibodies - pharmacology</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD - immunology</subject><subject>Biological activity</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes - drug effects</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>CD4-Positive T-Lymphocytes - metabolism</subject><subject>CD4-Positive T-Lymphocytes - virology</subject><subject>Cell culture</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - immunology</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Nucleus - virology</subject><subject>Chemical synthesis</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>Computational Biology/Bioinformatics</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas Systems</subject><subject>Electroporation - methods</subject><subject>Gene Editing - methods</subject><subject>Genetic modification</subject><subject>Genome editing</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>High-Throughput Screening Assays</subject><subject>HIV</subject><subject>HIV-1 - genetics</subject><subject>HIV-1 - immunology</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Infections</subject><subject>Interrogation</subject><subject>Life Sciences</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Microarrays</subject><subject>Multiplexing</subject><subject>Organic Chemistry</subject><subject>Pathogenesis</subject><subject>Primary Cell Culture</subject><subject>Proteins</subject><subject>Protocol</subject><subject>Questioning</subject><subject>Ribonucleoproteins</subject><subject>Ribonucleoproteins - genetics</subject><subject>Ribonucleoproteins - immunology</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>RNA, Guide, CRISPR-Cas Systems - metabolism</subject><subject>Transfection</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1uEzEQx60K1JbSB-gFWeKIFjz2-uuCVC0fjVSJqhSu1mZ3vNkqsVN7g8SNd-ANeRKcJhQ49OSR_Jv_zOhHyBmw18CEeZNrkFZVDEzFmLKVPiDHoCWruLb2yX1dVxyMPSLPcr5lrNZC6UNyJJiUVmhxTNbN9ezz1fWvHz-bNls6YIgrpBiGMSCmMQw0erpO46pN32nzrn5Fb2iHy2WmPiY6LZCOYcKU4tBOYwxb-mL2tcQtYp6ob7upYPdIKQuQn5Onvl1mPN2_J-TLh_c3zUV1-enjrDm_rLpas6kSoJGzzijJ58h6ZqEHxQTvrZHQ98IYr6yaQ-2ZB6G8ZdxjJxRwmKNWRpyQt7vc9Wa-wr7DMKV26fanuNiO7v-fMC7cEL85pYS2NZSAl_uAFO82mCd3GzcplJ0dB2lkzaVQhYId1aWYc0L_MAGY20pyO0muSHJbSU6Xnhf_rvbQ8cdKAfgOyOutAkx_Rz-e-hsCO566</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Hultquist, Judd F.</creator><creator>Hiatt, Joseph</creator><creator>Schumann, Kathrin</creator><creator>McGregor, Michael J.</creator><creator>Roth, Theodore L.</creator><creator>Haas, Paige</creator><creator>Doudna, Jennifer A.</creator><creator>Marson, Alexander</creator><creator>Krogan, Nevan J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3970-9573</orcidid><orcidid>https://orcid.org/0000-0001-9161-999X</orcidid></search><sort><creationdate>20190101</creationdate><title>CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions</title><author>Hultquist, Judd F. ; Hiatt, Joseph ; Schumann, Kathrin ; McGregor, Michael J. ; Roth, Theodore L. ; Haas, Paige ; Doudna, Jennifer A. ; Marson, Alexander ; Krogan, Nevan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-317e20c8652be0d091d16032d9851dd388f696b14f0f136f902fec36121be7683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/208/4041</topic><topic>631/326/596/2557</topic><topic>Analytical Chemistry</topic><topic>Antibodies - pharmacology</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD - immunology</topic><topic>Biological activity</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes - drug effects</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>CD4-Positive T-Lymphocytes - metabolism</topic><topic>CD4-Positive T-Lymphocytes - virology</topic><topic>Cell culture</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - immunology</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Nucleus - virology</topic><topic>Chemical synthesis</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>Computational Biology/Bioinformatics</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas Systems</topic><topic>Electroporation - methods</topic><topic>Gene Editing - methods</topic><topic>Genetic modification</topic><topic>Genome editing</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>High-Throughput Screening Assays</topic><topic>HIV</topic><topic>HIV-1 - genetics</topic><topic>HIV-1 - immunology</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Infections</topic><topic>Interrogation</topic><topic>Life Sciences</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Microarrays</topic><topic>Multiplexing</topic><topic>Organic Chemistry</topic><topic>Pathogenesis</topic><topic>Primary Cell Culture</topic><topic>Proteins</topic><topic>Protocol</topic><topic>Questioning</topic><topic>Ribonucleoproteins</topic><topic>Ribonucleoproteins - genetics</topic><topic>Ribonucleoproteins - immunology</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>RNA, Guide, CRISPR-Cas Systems - metabolism</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hultquist, Judd F.</creatorcontrib><creatorcontrib>Hiatt, Joseph</creatorcontrib><creatorcontrib>Schumann, Kathrin</creatorcontrib><creatorcontrib>McGregor, Michael J.</creatorcontrib><creatorcontrib>Roth, Theodore L.</creatorcontrib><creatorcontrib>Haas, Paige</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><creatorcontrib>Marson, Alexander</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hultquist, Judd F.</au><au>Hiatt, Joseph</au><au>Schumann, Kathrin</au><au>McGregor, Michael J.</au><au>Roth, Theodore L.</au><au>Haas, Paige</au><au>Doudna, Jennifer A.</au><au>Marson, Alexander</au><au>Krogan, Nevan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>CRISPR–Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4 + T cells to create a high-throughput platform for analyzing the role of host factors in HIV infection and pathogenesis. Briefly, CRISPR–Cas9 ribonucleoproteins (crRNPs) are synthesized in vitro and delivered to activated CD4 + T cells by nucleofection. These cells are then assayed for editing efficiency and expanded for use in downstream cellular, genetic, or protein-based assays. This platform supports the rapid, arrayed generation of multiple gene manipulations and is widely adaptable across culture conditions, infection protocols, and downstream applications. Here, we present detailed protocols for crRNP synthesis, primary T-cell culture, 96-well nucleofection, molecular validation, and HIV infection, and discuss additional considerations for guide and screen design, as well as crRNP multiplexing. Taken together, this procedure allows high-throughput identification and mechanistic interrogation of HIV host factors in primary CD4 + T cells by gene knockout, validation, and HIV spreading infection in as little as 2–3 weeks. In this protocol, the authors describe how to design, synthesize, and deliver CRISPR–Cas9 RNPs to primary CD4 + T cells for targeted gene knockout. They then show how the edited cells can be used for the analysis of host factors in HIV replication.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30559373</pmid><doi>10.1038/s41596-018-0069-7</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-3970-9573</orcidid><orcidid>https://orcid.org/0000-0001-9161-999X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2019-01, Vol.14 (1), p.1-27
issn 1754-2189
1750-2799
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6637941
source MEDLINE; SpringerLink Journals; Nature
subjects 631/208/4041
631/326/596/2557
Analytical Chemistry
Antibodies - pharmacology
Antigens, CD - genetics
Antigens, CD - immunology
Biological activity
Biological Techniques
Biomedical and Life Sciences
Biotechnology
CD4 antigen
CD4-Positive T-Lymphocytes - drug effects
CD4-Positive T-Lymphocytes - immunology
CD4-Positive T-Lymphocytes - metabolism
CD4-Positive T-Lymphocytes - virology
Cell culture
Cell Nucleus - drug effects
Cell Nucleus - immunology
Cell Nucleus - metabolism
Cell Nucleus - virology
Chemical synthesis
Clustered Regularly Interspaced Short Palindromic Repeats
Computational Biology/Bioinformatics
CRISPR
CRISPR-Associated Protein 9 - genetics
CRISPR-Associated Protein 9 - metabolism
CRISPR-Cas Systems
Electroporation - methods
Gene Editing - methods
Genetic modification
Genome editing
Genome, Human
Genomes
High-Throughput Screening Assays
HIV
HIV-1 - genetics
HIV-1 - immunology
Host-Pathogen Interactions - genetics
Host-Pathogen Interactions - immunology
Human immunodeficiency virus
Humans
Infections
Interrogation
Life Sciences
Lymphocyte Activation
Lymphocytes
Lymphocytes T
Microarrays
Multiplexing
Organic Chemistry
Pathogenesis
Primary Cell Culture
Proteins
Protocol
Questioning
Ribonucleoproteins
Ribonucleoproteins - genetics
Ribonucleoproteins - immunology
RNA, Guide, CRISPR-Cas Systems - genetics
RNA, Guide, CRISPR-Cas Systems - metabolism
Transfection
title CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR%E2%80%93Cas9%20genome%20engineering%20of%20primary%20CD4+%20T%20cells%20for%20the%20interrogation%20of%20HIV%E2%80%93host%20factor%20interactions&rft.jtitle=Nature%20protocols&rft.au=Hultquist,%20Judd%20F.&rft.date=2019-01-01&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-018-0069-7&rft_dat=%3Cproquest_pubme%3E2158542536%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158542536&rft_id=info:pmid/30559373&rfr_iscdi=true