CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions
CRISPR–Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4 + T cells to create a high-throughput platform for analyzing the...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2019-01, Vol.14 (1), p.1-27 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Nature protocols |
container_volume | 14 |
creator | Hultquist, Judd F. Hiatt, Joseph Schumann, Kathrin McGregor, Michael J. Roth, Theodore L. Haas, Paige Doudna, Jennifer A. Marson, Alexander Krogan, Nevan J. |
description | CRISPR–Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4
+
T cells to create a high-throughput platform for analyzing the role of host factors in HIV infection and pathogenesis. Briefly, CRISPR–Cas9 ribonucleoproteins (crRNPs) are synthesized in vitro and delivered to activated CD4
+
T cells by nucleofection. These cells are then assayed for editing efficiency and expanded for use in downstream cellular, genetic, or protein-based assays. This platform supports the rapid, arrayed generation of multiple gene manipulations and is widely adaptable across culture conditions, infection protocols, and downstream applications. Here, we present detailed protocols for crRNP synthesis, primary T-cell culture, 96-well nucleofection, molecular validation, and HIV infection, and discuss additional considerations for guide and screen design, as well as crRNP multiplexing. Taken together, this procedure allows high-throughput identification and mechanistic interrogation of HIV host factors in primary CD4
+
T cells by gene knockout, validation, and HIV spreading infection in as little as 2–3 weeks.
In this protocol, the authors describe how to design, synthesize, and deliver CRISPR–Cas9 RNPs to primary CD4
+
T cells for targeted gene knockout. They then show how the edited cells can be used for the analysis of host factors in HIV replication. |
doi_str_mv | 10.1038/s41596-018-0069-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6637941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158542536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-317e20c8652be0d091d16032d9851dd388f696b14f0f136f902fec36121be7683</originalsourceid><addsrcrecordid>eNp1kc1uEzEQx60K1JbSB-gFWeKIFjz2-uuCVC0fjVSJqhSu1mZ3vNkqsVN7g8SNd-ANeRKcJhQ49OSR_Jv_zOhHyBmw18CEeZNrkFZVDEzFmLKVPiDHoCWruLb2yX1dVxyMPSLPcr5lrNZC6UNyJJiUVmhxTNbN9ezz1fWvHz-bNls6YIgrpBiGMSCmMQw0erpO46pN32nzrn5Fb2iHy2WmPiY6LZCOYcKU4tBOYwxb-mL2tcQtYp6ob7upYPdIKQuQn5Onvl1mPN2_J-TLh_c3zUV1-enjrDm_rLpas6kSoJGzzijJ58h6ZqEHxQTvrZHQ98IYr6yaQ-2ZB6G8ZdxjJxRwmKNWRpyQt7vc9Wa-wr7DMKV26fanuNiO7v-fMC7cEL85pYS2NZSAl_uAFO82mCd3GzcplJ0dB2lkzaVQhYId1aWYc0L_MAGY20pyO0muSHJbSU6Xnhf_rvbQ8cdKAfgOyOutAkx_Rz-e-hsCO566</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158542536</pqid></control><display><type>article</type><title>CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Hultquist, Judd F. ; Hiatt, Joseph ; Schumann, Kathrin ; McGregor, Michael J. ; Roth, Theodore L. ; Haas, Paige ; Doudna, Jennifer A. ; Marson, Alexander ; Krogan, Nevan J.</creator><creatorcontrib>Hultquist, Judd F. ; Hiatt, Joseph ; Schumann, Kathrin ; McGregor, Michael J. ; Roth, Theodore L. ; Haas, Paige ; Doudna, Jennifer A. ; Marson, Alexander ; Krogan, Nevan J.</creatorcontrib><description>CRISPR–Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4
+
T cells to create a high-throughput platform for analyzing the role of host factors in HIV infection and pathogenesis. Briefly, CRISPR–Cas9 ribonucleoproteins (crRNPs) are synthesized in vitro and delivered to activated CD4
+
T cells by nucleofection. These cells are then assayed for editing efficiency and expanded for use in downstream cellular, genetic, or protein-based assays. This platform supports the rapid, arrayed generation of multiple gene manipulations and is widely adaptable across culture conditions, infection protocols, and downstream applications. Here, we present detailed protocols for crRNP synthesis, primary T-cell culture, 96-well nucleofection, molecular validation, and HIV infection, and discuss additional considerations for guide and screen design, as well as crRNP multiplexing. Taken together, this procedure allows high-throughput identification and mechanistic interrogation of HIV host factors in primary CD4
+
T cells by gene knockout, validation, and HIV spreading infection in as little as 2–3 weeks.
In this protocol, the authors describe how to design, synthesize, and deliver CRISPR–Cas9 RNPs to primary CD4
+
T cells for targeted gene knockout. They then show how the edited cells can be used for the analysis of host factors in HIV replication.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-018-0069-7</identifier><identifier>PMID: 30559373</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/4041 ; 631/326/596/2557 ; Analytical Chemistry ; Antibodies - pharmacology ; Antigens, CD - genetics ; Antigens, CD - immunology ; Biological activity ; Biological Techniques ; Biomedical and Life Sciences ; Biotechnology ; CD4 antigen ; CD4-Positive T-Lymphocytes - drug effects ; CD4-Positive T-Lymphocytes - immunology ; CD4-Positive T-Lymphocytes - metabolism ; CD4-Positive T-Lymphocytes - virology ; Cell culture ; Cell Nucleus - drug effects ; Cell Nucleus - immunology ; Cell Nucleus - metabolism ; Cell Nucleus - virology ; Chemical synthesis ; Clustered Regularly Interspaced Short Palindromic Repeats ; Computational Biology/Bioinformatics ; CRISPR ; CRISPR-Associated Protein 9 - genetics ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas Systems ; Electroporation - methods ; Gene Editing - methods ; Genetic modification ; Genome editing ; Genome, Human ; Genomes ; High-Throughput Screening Assays ; HIV ; HIV-1 - genetics ; HIV-1 - immunology ; Host-Pathogen Interactions - genetics ; Host-Pathogen Interactions - immunology ; Human immunodeficiency virus ; Humans ; Infections ; Interrogation ; Life Sciences ; Lymphocyte Activation ; Lymphocytes ; Lymphocytes T ; Microarrays ; Multiplexing ; Organic Chemistry ; Pathogenesis ; Primary Cell Culture ; Proteins ; Protocol ; Questioning ; Ribonucleoproteins ; Ribonucleoproteins - genetics ; Ribonucleoproteins - immunology ; RNA, Guide, CRISPR-Cas Systems - genetics ; RNA, Guide, CRISPR-Cas Systems - metabolism ; Transfection</subject><ispartof>Nature protocols, 2019-01, Vol.14 (1), p.1-27</ispartof><rights>Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-317e20c8652be0d091d16032d9851dd388f696b14f0f136f902fec36121be7683</citedby><cites>FETCH-LOGICAL-c470t-317e20c8652be0d091d16032d9851dd388f696b14f0f136f902fec36121be7683</cites><orcidid>0000-0002-3970-9573 ; 0000-0001-9161-999X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41596-018-0069-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41596-018-0069-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30559373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hultquist, Judd F.</creatorcontrib><creatorcontrib>Hiatt, Joseph</creatorcontrib><creatorcontrib>Schumann, Kathrin</creatorcontrib><creatorcontrib>McGregor, Michael J.</creatorcontrib><creatorcontrib>Roth, Theodore L.</creatorcontrib><creatorcontrib>Haas, Paige</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><creatorcontrib>Marson, Alexander</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><title>CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>CRISPR–Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4
+
T cells to create a high-throughput platform for analyzing the role of host factors in HIV infection and pathogenesis. Briefly, CRISPR–Cas9 ribonucleoproteins (crRNPs) are synthesized in vitro and delivered to activated CD4
+
T cells by nucleofection. These cells are then assayed for editing efficiency and expanded for use in downstream cellular, genetic, or protein-based assays. This platform supports the rapid, arrayed generation of multiple gene manipulations and is widely adaptable across culture conditions, infection protocols, and downstream applications. Here, we present detailed protocols for crRNP synthesis, primary T-cell culture, 96-well nucleofection, molecular validation, and HIV infection, and discuss additional considerations for guide and screen design, as well as crRNP multiplexing. Taken together, this procedure allows high-throughput identification and mechanistic interrogation of HIV host factors in primary CD4
+
T cells by gene knockout, validation, and HIV spreading infection in as little as 2–3 weeks.
In this protocol, the authors describe how to design, synthesize, and deliver CRISPR–Cas9 RNPs to primary CD4
+
T cells for targeted gene knockout. They then show how the edited cells can be used for the analysis of host factors in HIV replication.</description><subject>631/208/4041</subject><subject>631/326/596/2557</subject><subject>Analytical Chemistry</subject><subject>Antibodies - pharmacology</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD - immunology</subject><subject>Biological activity</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes - drug effects</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>CD4-Positive T-Lymphocytes - metabolism</subject><subject>CD4-Positive T-Lymphocytes - virology</subject><subject>Cell culture</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - immunology</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Nucleus - virology</subject><subject>Chemical synthesis</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>Computational Biology/Bioinformatics</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas Systems</subject><subject>Electroporation - methods</subject><subject>Gene Editing - methods</subject><subject>Genetic modification</subject><subject>Genome editing</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>High-Throughput Screening Assays</subject><subject>HIV</subject><subject>HIV-1 - genetics</subject><subject>HIV-1 - immunology</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Infections</subject><subject>Interrogation</subject><subject>Life Sciences</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Microarrays</subject><subject>Multiplexing</subject><subject>Organic Chemistry</subject><subject>Pathogenesis</subject><subject>Primary Cell Culture</subject><subject>Proteins</subject><subject>Protocol</subject><subject>Questioning</subject><subject>Ribonucleoproteins</subject><subject>Ribonucleoproteins - genetics</subject><subject>Ribonucleoproteins - immunology</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>RNA, Guide, CRISPR-Cas Systems - metabolism</subject><subject>Transfection</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1uEzEQx60K1JbSB-gFWeKIFjz2-uuCVC0fjVSJqhSu1mZ3vNkqsVN7g8SNd-ANeRKcJhQ49OSR_Jv_zOhHyBmw18CEeZNrkFZVDEzFmLKVPiDHoCWruLb2yX1dVxyMPSLPcr5lrNZC6UNyJJiUVmhxTNbN9ezz1fWvHz-bNls6YIgrpBiGMSCmMQw0erpO46pN32nzrn5Fb2iHy2WmPiY6LZCOYcKU4tBOYwxb-mL2tcQtYp6ob7upYPdIKQuQn5Onvl1mPN2_J-TLh_c3zUV1-enjrDm_rLpas6kSoJGzzijJ58h6ZqEHxQTvrZHQ98IYr6yaQ-2ZB6G8ZdxjJxRwmKNWRpyQt7vc9Wa-wr7DMKV26fanuNiO7v-fMC7cEL85pYS2NZSAl_uAFO82mCd3GzcplJ0dB2lkzaVQhYId1aWYc0L_MAGY20pyO0muSHJbSU6Xnhf_rvbQ8cdKAfgOyOutAkx_Rz-e-hsCO566</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Hultquist, Judd F.</creator><creator>Hiatt, Joseph</creator><creator>Schumann, Kathrin</creator><creator>McGregor, Michael J.</creator><creator>Roth, Theodore L.</creator><creator>Haas, Paige</creator><creator>Doudna, Jennifer A.</creator><creator>Marson, Alexander</creator><creator>Krogan, Nevan J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3970-9573</orcidid><orcidid>https://orcid.org/0000-0001-9161-999X</orcidid></search><sort><creationdate>20190101</creationdate><title>CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions</title><author>Hultquist, Judd F. ; Hiatt, Joseph ; Schumann, Kathrin ; McGregor, Michael J. ; Roth, Theodore L. ; Haas, Paige ; Doudna, Jennifer A. ; Marson, Alexander ; Krogan, Nevan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-317e20c8652be0d091d16032d9851dd388f696b14f0f136f902fec36121be7683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/208/4041</topic><topic>631/326/596/2557</topic><topic>Analytical Chemistry</topic><topic>Antibodies - pharmacology</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD - immunology</topic><topic>Biological activity</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes - drug effects</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>CD4-Positive T-Lymphocytes - metabolism</topic><topic>CD4-Positive T-Lymphocytes - virology</topic><topic>Cell culture</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - immunology</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Nucleus - virology</topic><topic>Chemical synthesis</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>Computational Biology/Bioinformatics</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas Systems</topic><topic>Electroporation - methods</topic><topic>Gene Editing - methods</topic><topic>Genetic modification</topic><topic>Genome editing</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>High-Throughput Screening Assays</topic><topic>HIV</topic><topic>HIV-1 - genetics</topic><topic>HIV-1 - immunology</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Infections</topic><topic>Interrogation</topic><topic>Life Sciences</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Microarrays</topic><topic>Multiplexing</topic><topic>Organic Chemistry</topic><topic>Pathogenesis</topic><topic>Primary Cell Culture</topic><topic>Proteins</topic><topic>Protocol</topic><topic>Questioning</topic><topic>Ribonucleoproteins</topic><topic>Ribonucleoproteins - genetics</topic><topic>Ribonucleoproteins - immunology</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>RNA, Guide, CRISPR-Cas Systems - metabolism</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hultquist, Judd F.</creatorcontrib><creatorcontrib>Hiatt, Joseph</creatorcontrib><creatorcontrib>Schumann, Kathrin</creatorcontrib><creatorcontrib>McGregor, Michael J.</creatorcontrib><creatorcontrib>Roth, Theodore L.</creatorcontrib><creatorcontrib>Haas, Paige</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><creatorcontrib>Marson, Alexander</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hultquist, Judd F.</au><au>Hiatt, Joseph</au><au>Schumann, Kathrin</au><au>McGregor, Michael J.</au><au>Roth, Theodore L.</au><au>Haas, Paige</au><au>Doudna, Jennifer A.</au><au>Marson, Alexander</au><au>Krogan, Nevan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>CRISPR–Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4
+
T cells to create a high-throughput platform for analyzing the role of host factors in HIV infection and pathogenesis. Briefly, CRISPR–Cas9 ribonucleoproteins (crRNPs) are synthesized in vitro and delivered to activated CD4
+
T cells by nucleofection. These cells are then assayed for editing efficiency and expanded for use in downstream cellular, genetic, or protein-based assays. This platform supports the rapid, arrayed generation of multiple gene manipulations and is widely adaptable across culture conditions, infection protocols, and downstream applications. Here, we present detailed protocols for crRNP synthesis, primary T-cell culture, 96-well nucleofection, molecular validation, and HIV infection, and discuss additional considerations for guide and screen design, as well as crRNP multiplexing. Taken together, this procedure allows high-throughput identification and mechanistic interrogation of HIV host factors in primary CD4
+
T cells by gene knockout, validation, and HIV spreading infection in as little as 2–3 weeks.
In this protocol, the authors describe how to design, synthesize, and deliver CRISPR–Cas9 RNPs to primary CD4
+
T cells for targeted gene knockout. They then show how the edited cells can be used for the analysis of host factors in HIV replication.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30559373</pmid><doi>10.1038/s41596-018-0069-7</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-3970-9573</orcidid><orcidid>https://orcid.org/0000-0001-9161-999X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-2189 |
ispartof | Nature protocols, 2019-01, Vol.14 (1), p.1-27 |
issn | 1754-2189 1750-2799 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6637941 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 631/208/4041 631/326/596/2557 Analytical Chemistry Antibodies - pharmacology Antigens, CD - genetics Antigens, CD - immunology Biological activity Biological Techniques Biomedical and Life Sciences Biotechnology CD4 antigen CD4-Positive T-Lymphocytes - drug effects CD4-Positive T-Lymphocytes - immunology CD4-Positive T-Lymphocytes - metabolism CD4-Positive T-Lymphocytes - virology Cell culture Cell Nucleus - drug effects Cell Nucleus - immunology Cell Nucleus - metabolism Cell Nucleus - virology Chemical synthesis Clustered Regularly Interspaced Short Palindromic Repeats Computational Biology/Bioinformatics CRISPR CRISPR-Associated Protein 9 - genetics CRISPR-Associated Protein 9 - metabolism CRISPR-Cas Systems Electroporation - methods Gene Editing - methods Genetic modification Genome editing Genome, Human Genomes High-Throughput Screening Assays HIV HIV-1 - genetics HIV-1 - immunology Host-Pathogen Interactions - genetics Host-Pathogen Interactions - immunology Human immunodeficiency virus Humans Infections Interrogation Life Sciences Lymphocyte Activation Lymphocytes Lymphocytes T Microarrays Multiplexing Organic Chemistry Pathogenesis Primary Cell Culture Proteins Protocol Questioning Ribonucleoproteins Ribonucleoproteins - genetics Ribonucleoproteins - immunology RNA, Guide, CRISPR-Cas Systems - genetics RNA, Guide, CRISPR-Cas Systems - metabolism Transfection |
title | CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR%E2%80%93Cas9%20genome%20engineering%20of%20primary%20CD4+%20T%20cells%20for%20the%20interrogation%20of%20HIV%E2%80%93host%20factor%20interactions&rft.jtitle=Nature%20protocols&rft.au=Hultquist,%20Judd%20F.&rft.date=2019-01-01&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-018-0069-7&rft_dat=%3Cproquest_pubme%3E2158542536%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158542536&rft_id=info:pmid/30559373&rfr_iscdi=true |