Discrete Changes in Glucose Metabolism Define Aging

Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-07, Vol.9 (1), p.10347-8, Article 10347
Hauptverfasser: Ravera, Silvia, Podestà, Marina, Sabatini, Federica, Dagnino, Monica, Cilloni, Daniela, Fiorini, Samuele, Barla, Annalisa, Frassoni, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 10347
container_title Scientific reports
container_volume 9
creator Ravera, Silvia
Podestà, Marina
Sabatini, Federica
Dagnino, Monica
Cilloni, Daniela
Fiorini, Samuele
Barla, Annalisa
Frassoni, Francesco
description Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked with the aging process that it is possible predict the age of a person on the basis of the modification of one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because the energy metabolism changes are involved in the aging process, in this work, we propose a new aging clock based on the modifications of glucose catabolism. The biochemical analyses were performed on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. Further, based on these biochemical markers, we developed a machine learning-based mathematical model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. This mathematical model represents a new non-invasive tool to evaluate and define the age of individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or the rejuvenation.
doi_str_mv 10.1038/s41598-019-46749-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6637183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259352487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-e305c7121a46b5b57ba6be9c1113b629df4b3ca2550e6863635c0b44e463e6343</originalsourceid><addsrcrecordid>eNp9kU1PAyEQhonRWKP-AQ9mEy9eVoEBdrmYmNavRONFzwTotF2z3VXY1fjvxbZq9SAXSOaZd5g8hBwwesIolKdRMKnLnDKdC1UInb9tkB1Ohcw5cL659h6Q_RifaDqSa8H0NhkAA6YY5TsERlX0ATvMhjPbTDFmVZNd1b1vI2Z32FnX1lWcZyOcVA1m59Oqme6RrYmtI-6v7l3yeHnxMLzOb--vbobnt7mXnHc5ApW-YJxZoZx0snBWOdSeMQZOcT2eCAfecikpqlKBAumpEwKFAlQgYJecLXOfezfHscemC7Y2z6Ga2_BuWluZ35Wmmplp-2qUgoKVkAKOVwGhfekxdmaetsW6tg22fTScS62p0voTPfqDPrV9aNJ6CwokF2WRKL6kfGhjDDj5_gyj5lOLWWoxSYtZaDFvqelwfY3vli8JCYAlEFMpOQg_s_-J_QBjGpbn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259352487</pqid></control><display><type>article</type><title>Discrete Changes in Glucose Metabolism Define Aging</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ravera, Silvia ; Podestà, Marina ; Sabatini, Federica ; Dagnino, Monica ; Cilloni, Daniela ; Fiorini, Samuele ; Barla, Annalisa ; Frassoni, Francesco</creator><creatorcontrib>Ravera, Silvia ; Podestà, Marina ; Sabatini, Federica ; Dagnino, Monica ; Cilloni, Daniela ; Fiorini, Samuele ; Barla, Annalisa ; Frassoni, Francesco</creatorcontrib><description>Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked with the aging process that it is possible predict the age of a person on the basis of the modification of one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because the energy metabolism changes are involved in the aging process, in this work, we propose a new aging clock based on the modifications of glucose catabolism. The biochemical analyses were performed on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. Further, based on these biochemical markers, we developed a machine learning-based mathematical model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. This mathematical model represents a new non-invasive tool to evaluate and define the age of individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or the rejuvenation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-46749-w</identifier><identifier>PMID: 31316102</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/95 ; 631/45/47 ; 692/53/2423 ; Adenosine Triphosphate - metabolism ; Adolescent ; Adult ; Age ; Aged ; Aged, 80 and over ; Aging ; Aging - metabolism ; AMP ; Autophagy ; Biochemical markers ; Biomarkers - metabolism ; Child ; Child, Preschool ; DNA methylation ; Energy Metabolism ; Epigenetics ; Female ; Glucose - metabolism ; Humanities and Social Sciences ; Humans ; L-Lactate dehydrogenase ; Lactic acid ; Learning algorithms ; Leukocytes (mononuclear) ; Leukocytes, Mononuclear - metabolism ; Machine Learning ; Male ; Malondialdehyde ; Malondialdehyde - metabolism ; Mathematical models ; Metabolism ; Middle Aged ; Mitochondria - metabolism ; Models, Biological ; multidisciplinary ; Oxidative Phosphorylation ; Oxidative stress ; Peripheral blood mononuclear cells ; Phagocytosis ; Phosphorylation ; Science ; Science (multidisciplinary) ; Young Adult</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.10347-8, Article 10347</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-e305c7121a46b5b57ba6be9c1113b629df4b3ca2550e6863635c0b44e463e6343</citedby><cites>FETCH-LOGICAL-c522t-e305c7121a46b5b57ba6be9c1113b629df4b3ca2550e6863635c0b44e463e6343</cites><orcidid>0000-0002-3436-035X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637183/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637183/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31316102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravera, Silvia</creatorcontrib><creatorcontrib>Podestà, Marina</creatorcontrib><creatorcontrib>Sabatini, Federica</creatorcontrib><creatorcontrib>Dagnino, Monica</creatorcontrib><creatorcontrib>Cilloni, Daniela</creatorcontrib><creatorcontrib>Fiorini, Samuele</creatorcontrib><creatorcontrib>Barla, Annalisa</creatorcontrib><creatorcontrib>Frassoni, Francesco</creatorcontrib><title>Discrete Changes in Glucose Metabolism Define Aging</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked with the aging process that it is possible predict the age of a person on the basis of the modification of one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because the energy metabolism changes are involved in the aging process, in this work, we propose a new aging clock based on the modifications of glucose catabolism. The biochemical analyses were performed on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. Further, based on these biochemical markers, we developed a machine learning-based mathematical model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. This mathematical model represents a new non-invasive tool to evaluate and define the age of individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or the rejuvenation.</description><subject>13/95</subject><subject>631/45/47</subject><subject>692/53/2423</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Age</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging</subject><subject>Aging - metabolism</subject><subject>AMP</subject><subject>Autophagy</subject><subject>Biochemical markers</subject><subject>Biomarkers - metabolism</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>DNA methylation</subject><subject>Energy Metabolism</subject><subject>Epigenetics</subject><subject>Female</subject><subject>Glucose - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Learning algorithms</subject><subject>Leukocytes (mononuclear)</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Malondialdehyde</subject><subject>Malondialdehyde - metabolism</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Oxidative Phosphorylation</subject><subject>Oxidative stress</subject><subject>Peripheral blood mononuclear cells</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1PAyEQhonRWKP-AQ9mEy9eVoEBdrmYmNavRONFzwTotF2z3VXY1fjvxbZq9SAXSOaZd5g8hBwwesIolKdRMKnLnDKdC1UInb9tkB1Ohcw5cL659h6Q_RifaDqSa8H0NhkAA6YY5TsERlX0ATvMhjPbTDFmVZNd1b1vI2Z32FnX1lWcZyOcVA1m59Oqme6RrYmtI-6v7l3yeHnxMLzOb--vbobnt7mXnHc5ApW-YJxZoZx0snBWOdSeMQZOcT2eCAfecikpqlKBAumpEwKFAlQgYJecLXOfezfHscemC7Y2z6Ga2_BuWluZ35Wmmplp-2qUgoKVkAKOVwGhfekxdmaetsW6tg22fTScS62p0voTPfqDPrV9aNJ6CwokF2WRKL6kfGhjDDj5_gyj5lOLWWoxSYtZaDFvqelwfY3vli8JCYAlEFMpOQg_s_-J_QBjGpbn</recordid><startdate>20190717</startdate><enddate>20190717</enddate><creator>Ravera, Silvia</creator><creator>Podestà, Marina</creator><creator>Sabatini, Federica</creator><creator>Dagnino, Monica</creator><creator>Cilloni, Daniela</creator><creator>Fiorini, Samuele</creator><creator>Barla, Annalisa</creator><creator>Frassoni, Francesco</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3436-035X</orcidid></search><sort><creationdate>20190717</creationdate><title>Discrete Changes in Glucose Metabolism Define Aging</title><author>Ravera, Silvia ; Podestà, Marina ; Sabatini, Federica ; Dagnino, Monica ; Cilloni, Daniela ; Fiorini, Samuele ; Barla, Annalisa ; Frassoni, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-e305c7121a46b5b57ba6be9c1113b629df4b3ca2550e6863635c0b44e463e6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/95</topic><topic>631/45/47</topic><topic>692/53/2423</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Age</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging</topic><topic>Aging - metabolism</topic><topic>AMP</topic><topic>Autophagy</topic><topic>Biochemical markers</topic><topic>Biomarkers - metabolism</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>DNA methylation</topic><topic>Energy Metabolism</topic><topic>Epigenetics</topic><topic>Female</topic><topic>Glucose - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Learning algorithms</topic><topic>Leukocytes (mononuclear)</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Malondialdehyde</topic><topic>Malondialdehyde - metabolism</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Oxidative Phosphorylation</topic><topic>Oxidative stress</topic><topic>Peripheral blood mononuclear cells</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravera, Silvia</creatorcontrib><creatorcontrib>Podestà, Marina</creatorcontrib><creatorcontrib>Sabatini, Federica</creatorcontrib><creatorcontrib>Dagnino, Monica</creatorcontrib><creatorcontrib>Cilloni, Daniela</creatorcontrib><creatorcontrib>Fiorini, Samuele</creatorcontrib><creatorcontrib>Barla, Annalisa</creatorcontrib><creatorcontrib>Frassoni, Francesco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravera, Silvia</au><au>Podestà, Marina</au><au>Sabatini, Federica</au><au>Dagnino, Monica</au><au>Cilloni, Daniela</au><au>Fiorini, Samuele</au><au>Barla, Annalisa</au><au>Frassoni, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Changes in Glucose Metabolism Define Aging</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-07-17</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>10347</spage><epage>8</epage><pages>10347-8</pages><artnum>10347</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked with the aging process that it is possible predict the age of a person on the basis of the modification of one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because the energy metabolism changes are involved in the aging process, in this work, we propose a new aging clock based on the modifications of glucose catabolism. The biochemical analyses were performed on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. Further, based on these biochemical markers, we developed a machine learning-based mathematical model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. This mathematical model represents a new non-invasive tool to evaluate and define the age of individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or the rejuvenation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31316102</pmid><doi>10.1038/s41598-019-46749-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3436-035X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-07, Vol.9 (1), p.10347-8, Article 10347
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6637183
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 13/95
631/45/47
692/53/2423
Adenosine Triphosphate - metabolism
Adolescent
Adult
Age
Aged
Aged, 80 and over
Aging
Aging - metabolism
AMP
Autophagy
Biochemical markers
Biomarkers - metabolism
Child
Child, Preschool
DNA methylation
Energy Metabolism
Epigenetics
Female
Glucose - metabolism
Humanities and Social Sciences
Humans
L-Lactate dehydrogenase
Lactic acid
Learning algorithms
Leukocytes (mononuclear)
Leukocytes, Mononuclear - metabolism
Machine Learning
Male
Malondialdehyde
Malondialdehyde - metabolism
Mathematical models
Metabolism
Middle Aged
Mitochondria - metabolism
Models, Biological
multidisciplinary
Oxidative Phosphorylation
Oxidative stress
Peripheral blood mononuclear cells
Phagocytosis
Phosphorylation
Science
Science (multidisciplinary)
Young Adult
title Discrete Changes in Glucose Metabolism Define Aging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Changes%20in%20Glucose%20Metabolism%20Define%20Aging&rft.jtitle=Scientific%20reports&rft.au=Ravera,%20Silvia&rft.date=2019-07-17&rft.volume=9&rft.issue=1&rft.spage=10347&rft.epage=8&rft.pages=10347-8&rft.artnum=10347&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-46749-w&rft_dat=%3Cproquest_pubme%3E2259352487%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259352487&rft_id=info:pmid/31316102&rfr_iscdi=true