Discrete Changes in Glucose Metabolism Define Aging
Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-07, Vol.9 (1), p.10347-8, Article 10347 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 1 |
container_start_page | 10347 |
container_title | Scientific reports |
container_volume | 9 |
creator | Ravera, Silvia Podestà, Marina Sabatini, Federica Dagnino, Monica Cilloni, Daniela Fiorini, Samuele Barla, Annalisa Frassoni, Francesco |
description | Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked with the aging process that it is possible predict the age of a person on the basis of the modification of one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because the energy metabolism changes are involved in the aging process, in this work, we propose a new aging clock based on the modifications of glucose catabolism. The biochemical analyses were performed on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. Further, based on these biochemical markers, we developed a machine learning-based mathematical model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. This mathematical model represents a new non-invasive tool to evaluate and define the age of individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or the rejuvenation. |
doi_str_mv | 10.1038/s41598-019-46749-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6637183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259352487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-e305c7121a46b5b57ba6be9c1113b629df4b3ca2550e6863635c0b44e463e6343</originalsourceid><addsrcrecordid>eNp9kU1PAyEQhonRWKP-AQ9mEy9eVoEBdrmYmNavRONFzwTotF2z3VXY1fjvxbZq9SAXSOaZd5g8hBwwesIolKdRMKnLnDKdC1UInb9tkB1Ohcw5cL659h6Q_RifaDqSa8H0NhkAA6YY5TsERlX0ATvMhjPbTDFmVZNd1b1vI2Z32FnX1lWcZyOcVA1m59Oqme6RrYmtI-6v7l3yeHnxMLzOb--vbobnt7mXnHc5ApW-YJxZoZx0snBWOdSeMQZOcT2eCAfecikpqlKBAumpEwKFAlQgYJecLXOfezfHscemC7Y2z6Ga2_BuWluZ35Wmmplp-2qUgoKVkAKOVwGhfekxdmaetsW6tg22fTScS62p0voTPfqDPrV9aNJ6CwokF2WRKL6kfGhjDDj5_gyj5lOLWWoxSYtZaDFvqelwfY3vli8JCYAlEFMpOQg_s_-J_QBjGpbn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259352487</pqid></control><display><type>article</type><title>Discrete Changes in Glucose Metabolism Define Aging</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ravera, Silvia ; Podestà, Marina ; Sabatini, Federica ; Dagnino, Monica ; Cilloni, Daniela ; Fiorini, Samuele ; Barla, Annalisa ; Frassoni, Francesco</creator><creatorcontrib>Ravera, Silvia ; Podestà, Marina ; Sabatini, Federica ; Dagnino, Monica ; Cilloni, Daniela ; Fiorini, Samuele ; Barla, Annalisa ; Frassoni, Francesco</creatorcontrib><description>Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked with the aging process that it is possible predict the age of a person on the basis of the modification of one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because the energy metabolism changes are involved in the aging process, in this work, we propose a new aging clock based on the modifications of glucose catabolism. The biochemical analyses were performed on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. Further, based on these biochemical markers, we developed a machine learning-based mathematical model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. This mathematical model represents a new non-invasive tool to evaluate and define the age of individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or the rejuvenation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-46749-w</identifier><identifier>PMID: 31316102</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/95 ; 631/45/47 ; 692/53/2423 ; Adenosine Triphosphate - metabolism ; Adolescent ; Adult ; Age ; Aged ; Aged, 80 and over ; Aging ; Aging - metabolism ; AMP ; Autophagy ; Biochemical markers ; Biomarkers - metabolism ; Child ; Child, Preschool ; DNA methylation ; Energy Metabolism ; Epigenetics ; Female ; Glucose - metabolism ; Humanities and Social Sciences ; Humans ; L-Lactate dehydrogenase ; Lactic acid ; Learning algorithms ; Leukocytes (mononuclear) ; Leukocytes, Mononuclear - metabolism ; Machine Learning ; Male ; Malondialdehyde ; Malondialdehyde - metabolism ; Mathematical models ; Metabolism ; Middle Aged ; Mitochondria - metabolism ; Models, Biological ; multidisciplinary ; Oxidative Phosphorylation ; Oxidative stress ; Peripheral blood mononuclear cells ; Phagocytosis ; Phosphorylation ; Science ; Science (multidisciplinary) ; Young Adult</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.10347-8, Article 10347</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-e305c7121a46b5b57ba6be9c1113b629df4b3ca2550e6863635c0b44e463e6343</citedby><cites>FETCH-LOGICAL-c522t-e305c7121a46b5b57ba6be9c1113b629df4b3ca2550e6863635c0b44e463e6343</cites><orcidid>0000-0002-3436-035X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637183/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637183/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31316102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravera, Silvia</creatorcontrib><creatorcontrib>Podestà, Marina</creatorcontrib><creatorcontrib>Sabatini, Federica</creatorcontrib><creatorcontrib>Dagnino, Monica</creatorcontrib><creatorcontrib>Cilloni, Daniela</creatorcontrib><creatorcontrib>Fiorini, Samuele</creatorcontrib><creatorcontrib>Barla, Annalisa</creatorcontrib><creatorcontrib>Frassoni, Francesco</creatorcontrib><title>Discrete Changes in Glucose Metabolism Define Aging</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked with the aging process that it is possible predict the age of a person on the basis of the modification of one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because the energy metabolism changes are involved in the aging process, in this work, we propose a new aging clock based on the modifications of glucose catabolism. The biochemical analyses were performed on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. Further, based on these biochemical markers, we developed a machine learning-based mathematical model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. This mathematical model represents a new non-invasive tool to evaluate and define the age of individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or the rejuvenation.</description><subject>13/95</subject><subject>631/45/47</subject><subject>692/53/2423</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Age</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging</subject><subject>Aging - metabolism</subject><subject>AMP</subject><subject>Autophagy</subject><subject>Biochemical markers</subject><subject>Biomarkers - metabolism</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>DNA methylation</subject><subject>Energy Metabolism</subject><subject>Epigenetics</subject><subject>Female</subject><subject>Glucose - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Learning algorithms</subject><subject>Leukocytes (mononuclear)</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Malondialdehyde</subject><subject>Malondialdehyde - metabolism</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Oxidative Phosphorylation</subject><subject>Oxidative stress</subject><subject>Peripheral blood mononuclear cells</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1PAyEQhonRWKP-AQ9mEy9eVoEBdrmYmNavRONFzwTotF2z3VXY1fjvxbZq9SAXSOaZd5g8hBwwesIolKdRMKnLnDKdC1UInb9tkB1Ohcw5cL659h6Q_RifaDqSa8H0NhkAA6YY5TsERlX0ATvMhjPbTDFmVZNd1b1vI2Z32FnX1lWcZyOcVA1m59Oqme6RrYmtI-6v7l3yeHnxMLzOb--vbobnt7mXnHc5ApW-YJxZoZx0snBWOdSeMQZOcT2eCAfecikpqlKBAumpEwKFAlQgYJecLXOfezfHscemC7Y2z6Ga2_BuWluZ35Wmmplp-2qUgoKVkAKOVwGhfekxdmaetsW6tg22fTScS62p0voTPfqDPrV9aNJ6CwokF2WRKL6kfGhjDDj5_gyj5lOLWWoxSYtZaDFvqelwfY3vli8JCYAlEFMpOQg_s_-J_QBjGpbn</recordid><startdate>20190717</startdate><enddate>20190717</enddate><creator>Ravera, Silvia</creator><creator>Podestà, Marina</creator><creator>Sabatini, Federica</creator><creator>Dagnino, Monica</creator><creator>Cilloni, Daniela</creator><creator>Fiorini, Samuele</creator><creator>Barla, Annalisa</creator><creator>Frassoni, Francesco</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3436-035X</orcidid></search><sort><creationdate>20190717</creationdate><title>Discrete Changes in Glucose Metabolism Define Aging</title><author>Ravera, Silvia ; Podestà, Marina ; Sabatini, Federica ; Dagnino, Monica ; Cilloni, Daniela ; Fiorini, Samuele ; Barla, Annalisa ; Frassoni, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-e305c7121a46b5b57ba6be9c1113b629df4b3ca2550e6863635c0b44e463e6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/95</topic><topic>631/45/47</topic><topic>692/53/2423</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Age</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging</topic><topic>Aging - metabolism</topic><topic>AMP</topic><topic>Autophagy</topic><topic>Biochemical markers</topic><topic>Biomarkers - metabolism</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>DNA methylation</topic><topic>Energy Metabolism</topic><topic>Epigenetics</topic><topic>Female</topic><topic>Glucose - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Learning algorithms</topic><topic>Leukocytes (mononuclear)</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Malondialdehyde</topic><topic>Malondialdehyde - metabolism</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Oxidative Phosphorylation</topic><topic>Oxidative stress</topic><topic>Peripheral blood mononuclear cells</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravera, Silvia</creatorcontrib><creatorcontrib>Podestà, Marina</creatorcontrib><creatorcontrib>Sabatini, Federica</creatorcontrib><creatorcontrib>Dagnino, Monica</creatorcontrib><creatorcontrib>Cilloni, Daniela</creatorcontrib><creatorcontrib>Fiorini, Samuele</creatorcontrib><creatorcontrib>Barla, Annalisa</creatorcontrib><creatorcontrib>Frassoni, Francesco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravera, Silvia</au><au>Podestà, Marina</au><au>Sabatini, Federica</au><au>Dagnino, Monica</au><au>Cilloni, Daniela</au><au>Fiorini, Samuele</au><au>Barla, Annalisa</au><au>Frassoni, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Changes in Glucose Metabolism Define Aging</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-07-17</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>10347</spage><epage>8</epage><pages>10347-8</pages><artnum>10347</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked with the aging process that it is possible predict the age of a person on the basis of the modification of one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because the energy metabolism changes are involved in the aging process, in this work, we propose a new aging clock based on the modifications of glucose catabolism. The biochemical analyses were performed on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. Further, based on these biochemical markers, we developed a machine learning-based mathematical model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. This mathematical model represents a new non-invasive tool to evaluate and define the age of individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or the rejuvenation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31316102</pmid><doi>10.1038/s41598-019-46749-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3436-035X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-07, Vol.9 (1), p.10347-8, Article 10347 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6637183 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 13/95 631/45/47 692/53/2423 Adenosine Triphosphate - metabolism Adolescent Adult Age Aged Aged, 80 and over Aging Aging - metabolism AMP Autophagy Biochemical markers Biomarkers - metabolism Child Child, Preschool DNA methylation Energy Metabolism Epigenetics Female Glucose - metabolism Humanities and Social Sciences Humans L-Lactate dehydrogenase Lactic acid Learning algorithms Leukocytes (mononuclear) Leukocytes, Mononuclear - metabolism Machine Learning Male Malondialdehyde Malondialdehyde - metabolism Mathematical models Metabolism Middle Aged Mitochondria - metabolism Models, Biological multidisciplinary Oxidative Phosphorylation Oxidative stress Peripheral blood mononuclear cells Phagocytosis Phosphorylation Science Science (multidisciplinary) Young Adult |
title | Discrete Changes in Glucose Metabolism Define Aging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Changes%20in%20Glucose%20Metabolism%20Define%20Aging&rft.jtitle=Scientific%20reports&rft.au=Ravera,%20Silvia&rft.date=2019-07-17&rft.volume=9&rft.issue=1&rft.spage=10347&rft.epage=8&rft.pages=10347-8&rft.artnum=10347&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-46749-w&rft_dat=%3Cproquest_pubme%3E2259352487%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259352487&rft_id=info:pmid/31316102&rfr_iscdi=true |