Multisite reliability and repeatability of an advanced brain MRI protocol

Background MRI is the imaging modality of choice for diagnosis and intervention assessment in neurological disease. Its full potential has not been realized due in part to challenges in harmonizing advanced techniques across multiple sites. Purpose To develop a method for the assessment of reliabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2019-09, Vol.50 (3), p.878-888
Hauptverfasser: Schwartz, Daniel L., Tagge, Ian, Powers, Katherine, Ahn, Sinyeob, Bakshi, Rohit, Calabresi, Peter A., Todd Constable, R., Grinstead, John, Henry, Roland G., Nair, Govind, Papinutto, Nico, Pelletier, Daniel, Shinohara, Russell, Oh, Jiwon, Reich, Daniel S., Sicotte, Nancy L., Rooney, William D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 888
container_issue 3
container_start_page 878
container_title Journal of magnetic resonance imaging
container_volume 50
creator Schwartz, Daniel L.
Tagge, Ian
Powers, Katherine
Ahn, Sinyeob
Bakshi, Rohit
Calabresi, Peter A.
Todd Constable, R.
Grinstead, John
Henry, Roland G.
Nair, Govind
Papinutto, Nico
Pelletier, Daniel
Shinohara, Russell
Oh, Jiwon
Reich, Daniel S.
Sicotte, Nancy L.
Rooney, William D.
description Background MRI is the imaging modality of choice for diagnosis and intervention assessment in neurological disease. Its full potential has not been realized due in part to challenges in harmonizing advanced techniques across multiple sites. Purpose To develop a method for the assessment of reliability and repeatability of advanced multisite‐multisession neuroimaging studies and specifically to assess the reliability of an advanced MRI protocol, including multiband fMRI and diffusion tensor MRI, in a multisite setting. Study Type Prospective. Population Twice repeated measurement of a single subject with stable relapsing‐remitting multiple sclerosis (MS) at seven institutions. Field Strength/Sequence A 3 T MRI protocol included higher spatial resolution anatomical scans, a variable flip‐angle longitudinal relaxation rate constant (R1 ≡ 1/T1) measurement, quantitative magnetization transfer imaging, diffusion tensor imaging, and a resting‐state fMRI (rsFMRI) series. Assessment Multiple methods of assessing intrasite repeatability and intersite reliability were evaluated for imaging metrics derived from each sequence. Statistical Tests Student's t‐test, Pearson's r, and intraclass correlation coefficient (ICC) (2,1) were employed to assess repeatability and reliability. Two new statistical metrics are introduced that frame reliability and repeatability in the respective units of the measurements themselves. Results Intrasite repeatability was excellent for quantitative R1, magnetization transfer ratio (MTR), and diffusion‐weighted imaging (DWI) based metrics (r > 0.95). rsFMRI metrics were less repeatable (r = 0.8). Intersite reliability was excellent for R1, MTR, and DWI (ICC >0.9), and moderate for rsFMRI metrics (ICC∼0.4). Data Conclusion From most reliable to least, using a new reliability metric introduced here, MTR > R1 > DWI > rsFMRI; for repeatability, MTR > DWI > R1 > rsFMRI. A graphical method for at‐a‐glance assessment of reliability and repeatability, effect sizes, and outlier identification in multisite‐multisession neuroimaging studies is introduced. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:878–888.
doi_str_mv 10.1002/jmri.26652
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6636359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179373910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4962-c5435959e9d9408f8a453b1297f7d597805eea6062e3fd6199de013c613d70723</originalsourceid><addsrcrecordid>eNp9kUFrHCEUxyW0NGnaSz5AGOilBCZ96qjjJVBC02zJEijtWdzxTevijhudSdlvXzebLGkOPanPHz-f70_ICYVzCsA-LVfJnzMpBTsgR1QwVjPRyldlD4LXtAV1SN7mvAQArRvxhhxyKDDX9IjM5lMYffYjVgmDtwsf_Lip7ODKeY12fKrEvhQr6-7t0KGrFsn6oZp_n1XrFMfYxfCOvO5tyPj-cT0mP6--_Li8rm9uv84uP9_UXaMlqzvRcKGFRu10A23f2kbwBWVa9coJrVoQiFaCZMh7J6nWDoHyTlLuFCjGj8nFzrueFit0HQ5jssGsk1_ZtDHRevPvzeB_m1_x3kjJZXm6CD4-ClK8mzCPZuVzhyHYAeOUDaNKc1WmAwX98AJdxikN5XuGMVVALmBLne2oLsWcE_b7ZiiYbUJmm5B5SKjAp8_b36NPkRSA7oA_PuDmPyrzrYx_J_0L1Eea5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272173500</pqid></control><display><type>article</type><title>Multisite reliability and repeatability of an advanced brain MRI protocol</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Schwartz, Daniel L. ; Tagge, Ian ; Powers, Katherine ; Ahn, Sinyeob ; Bakshi, Rohit ; Calabresi, Peter A. ; Todd Constable, R. ; Grinstead, John ; Henry, Roland G. ; Nair, Govind ; Papinutto, Nico ; Pelletier, Daniel ; Shinohara, Russell ; Oh, Jiwon ; Reich, Daniel S. ; Sicotte, Nancy L. ; Rooney, William D.</creator><creatorcontrib>Schwartz, Daniel L. ; Tagge, Ian ; Powers, Katherine ; Ahn, Sinyeob ; Bakshi, Rohit ; Calabresi, Peter A. ; Todd Constable, R. ; Grinstead, John ; Henry, Roland G. ; Nair, Govind ; Papinutto, Nico ; Pelletier, Daniel ; Shinohara, Russell ; Oh, Jiwon ; Reich, Daniel S. ; Sicotte, Nancy L. ; Rooney, William D. ; NAIMS Cooperative ; on behalf of the NAIMS Cooperative</creatorcontrib><description>Background MRI is the imaging modality of choice for diagnosis and intervention assessment in neurological disease. Its full potential has not been realized due in part to challenges in harmonizing advanced techniques across multiple sites. Purpose To develop a method for the assessment of reliability and repeatability of advanced multisite‐multisession neuroimaging studies and specifically to assess the reliability of an advanced MRI protocol, including multiband fMRI and diffusion tensor MRI, in a multisite setting. Study Type Prospective. Population Twice repeated measurement of a single subject with stable relapsing‐remitting multiple sclerosis (MS) at seven institutions. Field Strength/Sequence A 3 T MRI protocol included higher spatial resolution anatomical scans, a variable flip‐angle longitudinal relaxation rate constant (R1 ≡ 1/T1) measurement, quantitative magnetization transfer imaging, diffusion tensor imaging, and a resting‐state fMRI (rsFMRI) series. Assessment Multiple methods of assessing intrasite repeatability and intersite reliability were evaluated for imaging metrics derived from each sequence. Statistical Tests Student's t‐test, Pearson's r, and intraclass correlation coefficient (ICC) (2,1) were employed to assess repeatability and reliability. Two new statistical metrics are introduced that frame reliability and repeatability in the respective units of the measurements themselves. Results Intrasite repeatability was excellent for quantitative R1, magnetization transfer ratio (MTR), and diffusion‐weighted imaging (DWI) based metrics (r &gt; 0.95). rsFMRI metrics were less repeatable (r = 0.8). Intersite reliability was excellent for R1, MTR, and DWI (ICC &gt;0.9), and moderate for rsFMRI metrics (ICC∼0.4). Data Conclusion From most reliable to least, using a new reliability metric introduced here, MTR &gt; R1 &gt; DWI &gt; rsFMRI; for repeatability, MTR &gt; DWI &gt; R1 &gt; rsFMRI. A graphical method for at‐a‐glance assessment of reliability and repeatability, effect sizes, and outlier identification in multisite‐multisession neuroimaging studies is introduced. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:878–888.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26652</identifier><identifier>PMID: 30652391</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Brain ; Brain mapping ; Correlation coefficient ; Correlation coefficients ; Data analysis ; Diffusion rate ; Field strength ; Functional magnetic resonance imaging ; Graphical methods ; Longitude ; Magnetic resonance imaging ; Magnetization ; Mathematical analysis ; Medical imaging ; MRI ; Multiple sclerosis ; multisite ; Neuroimaging ; Neurological diseases ; Neurology ; Outliers (statistics) ; Population (statistical) ; Population studies ; reliability ; Reliability analysis ; repeatability ; Reproducibility ; Spatial discrimination ; Spatial resolution ; Statistical analysis ; Statistical tests ; Tensors</subject><ispartof>Journal of magnetic resonance imaging, 2019-09, Vol.50 (3), p.878-888</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4962-c5435959e9d9408f8a453b1297f7d597805eea6062e3fd6199de013c613d70723</citedby><cites>FETCH-LOGICAL-c4962-c5435959e9d9408f8a453b1297f7d597805eea6062e3fd6199de013c613d70723</cites><orcidid>0000-0002-5260-7117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.26652$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.26652$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30652391$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwartz, Daniel L.</creatorcontrib><creatorcontrib>Tagge, Ian</creatorcontrib><creatorcontrib>Powers, Katherine</creatorcontrib><creatorcontrib>Ahn, Sinyeob</creatorcontrib><creatorcontrib>Bakshi, Rohit</creatorcontrib><creatorcontrib>Calabresi, Peter A.</creatorcontrib><creatorcontrib>Todd Constable, R.</creatorcontrib><creatorcontrib>Grinstead, John</creatorcontrib><creatorcontrib>Henry, Roland G.</creatorcontrib><creatorcontrib>Nair, Govind</creatorcontrib><creatorcontrib>Papinutto, Nico</creatorcontrib><creatorcontrib>Pelletier, Daniel</creatorcontrib><creatorcontrib>Shinohara, Russell</creatorcontrib><creatorcontrib>Oh, Jiwon</creatorcontrib><creatorcontrib>Reich, Daniel S.</creatorcontrib><creatorcontrib>Sicotte, Nancy L.</creatorcontrib><creatorcontrib>Rooney, William D.</creatorcontrib><creatorcontrib>NAIMS Cooperative</creatorcontrib><creatorcontrib>on behalf of the NAIMS Cooperative</creatorcontrib><title>Multisite reliability and repeatability of an advanced brain MRI protocol</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background MRI is the imaging modality of choice for diagnosis and intervention assessment in neurological disease. Its full potential has not been realized due in part to challenges in harmonizing advanced techniques across multiple sites. Purpose To develop a method for the assessment of reliability and repeatability of advanced multisite‐multisession neuroimaging studies and specifically to assess the reliability of an advanced MRI protocol, including multiband fMRI and diffusion tensor MRI, in a multisite setting. Study Type Prospective. Population Twice repeated measurement of a single subject with stable relapsing‐remitting multiple sclerosis (MS) at seven institutions. Field Strength/Sequence A 3 T MRI protocol included higher spatial resolution anatomical scans, a variable flip‐angle longitudinal relaxation rate constant (R1 ≡ 1/T1) measurement, quantitative magnetization transfer imaging, diffusion tensor imaging, and a resting‐state fMRI (rsFMRI) series. Assessment Multiple methods of assessing intrasite repeatability and intersite reliability were evaluated for imaging metrics derived from each sequence. Statistical Tests Student's t‐test, Pearson's r, and intraclass correlation coefficient (ICC) (2,1) were employed to assess repeatability and reliability. Two new statistical metrics are introduced that frame reliability and repeatability in the respective units of the measurements themselves. Results Intrasite repeatability was excellent for quantitative R1, magnetization transfer ratio (MTR), and diffusion‐weighted imaging (DWI) based metrics (r &gt; 0.95). rsFMRI metrics were less repeatable (r = 0.8). Intersite reliability was excellent for R1, MTR, and DWI (ICC &gt;0.9), and moderate for rsFMRI metrics (ICC∼0.4). Data Conclusion From most reliable to least, using a new reliability metric introduced here, MTR &gt; R1 &gt; DWI &gt; rsFMRI; for repeatability, MTR &gt; DWI &gt; R1 &gt; rsFMRI. A graphical method for at‐a‐glance assessment of reliability and repeatability, effect sizes, and outlier identification in multisite‐multisession neuroimaging studies is introduced. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:878–888.</description><subject>Brain</subject><subject>Brain mapping</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Data analysis</subject><subject>Diffusion rate</subject><subject>Field strength</subject><subject>Functional magnetic resonance imaging</subject><subject>Graphical methods</subject><subject>Longitude</subject><subject>Magnetic resonance imaging</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>MRI</subject><subject>Multiple sclerosis</subject><subject>multisite</subject><subject>Neuroimaging</subject><subject>Neurological diseases</subject><subject>Neurology</subject><subject>Outliers (statistics)</subject><subject>Population (statistical)</subject><subject>Population studies</subject><subject>reliability</subject><subject>Reliability analysis</subject><subject>repeatability</subject><subject>Reproducibility</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Tensors</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrHCEUxyW0NGnaSz5AGOilBCZ96qjjJVBC02zJEijtWdzxTevijhudSdlvXzebLGkOPanPHz-f70_ICYVzCsA-LVfJnzMpBTsgR1QwVjPRyldlD4LXtAV1SN7mvAQArRvxhhxyKDDX9IjM5lMYffYjVgmDtwsf_Lip7ODKeY12fKrEvhQr6-7t0KGrFsn6oZp_n1XrFMfYxfCOvO5tyPj-cT0mP6--_Li8rm9uv84uP9_UXaMlqzvRcKGFRu10A23f2kbwBWVa9coJrVoQiFaCZMh7J6nWDoHyTlLuFCjGj8nFzrueFit0HQ5jssGsk1_ZtDHRevPvzeB_m1_x3kjJZXm6CD4-ClK8mzCPZuVzhyHYAeOUDaNKc1WmAwX98AJdxikN5XuGMVVALmBLne2oLsWcE_b7ZiiYbUJmm5B5SKjAp8_b36NPkRSA7oA_PuDmPyrzrYx_J_0L1Eea5w</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Schwartz, Daniel L.</creator><creator>Tagge, Ian</creator><creator>Powers, Katherine</creator><creator>Ahn, Sinyeob</creator><creator>Bakshi, Rohit</creator><creator>Calabresi, Peter A.</creator><creator>Todd Constable, R.</creator><creator>Grinstead, John</creator><creator>Henry, Roland G.</creator><creator>Nair, Govind</creator><creator>Papinutto, Nico</creator><creator>Pelletier, Daniel</creator><creator>Shinohara, Russell</creator><creator>Oh, Jiwon</creator><creator>Reich, Daniel S.</creator><creator>Sicotte, Nancy L.</creator><creator>Rooney, William D.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5260-7117</orcidid></search><sort><creationdate>201909</creationdate><title>Multisite reliability and repeatability of an advanced brain MRI protocol</title><author>Schwartz, Daniel L. ; Tagge, Ian ; Powers, Katherine ; Ahn, Sinyeob ; Bakshi, Rohit ; Calabresi, Peter A. ; Todd Constable, R. ; Grinstead, John ; Henry, Roland G. ; Nair, Govind ; Papinutto, Nico ; Pelletier, Daniel ; Shinohara, Russell ; Oh, Jiwon ; Reich, Daniel S. ; Sicotte, Nancy L. ; Rooney, William D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4962-c5435959e9d9408f8a453b1297f7d597805eea6062e3fd6199de013c613d70723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brain</topic><topic>Brain mapping</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Data analysis</topic><topic>Diffusion rate</topic><topic>Field strength</topic><topic>Functional magnetic resonance imaging</topic><topic>Graphical methods</topic><topic>Longitude</topic><topic>Magnetic resonance imaging</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>MRI</topic><topic>Multiple sclerosis</topic><topic>multisite</topic><topic>Neuroimaging</topic><topic>Neurological diseases</topic><topic>Neurology</topic><topic>Outliers (statistics)</topic><topic>Population (statistical)</topic><topic>Population studies</topic><topic>reliability</topic><topic>Reliability analysis</topic><topic>repeatability</topic><topic>Reproducibility</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwartz, Daniel L.</creatorcontrib><creatorcontrib>Tagge, Ian</creatorcontrib><creatorcontrib>Powers, Katherine</creatorcontrib><creatorcontrib>Ahn, Sinyeob</creatorcontrib><creatorcontrib>Bakshi, Rohit</creatorcontrib><creatorcontrib>Calabresi, Peter A.</creatorcontrib><creatorcontrib>Todd Constable, R.</creatorcontrib><creatorcontrib>Grinstead, John</creatorcontrib><creatorcontrib>Henry, Roland G.</creatorcontrib><creatorcontrib>Nair, Govind</creatorcontrib><creatorcontrib>Papinutto, Nico</creatorcontrib><creatorcontrib>Pelletier, Daniel</creatorcontrib><creatorcontrib>Shinohara, Russell</creatorcontrib><creatorcontrib>Oh, Jiwon</creatorcontrib><creatorcontrib>Reich, Daniel S.</creatorcontrib><creatorcontrib>Sicotte, Nancy L.</creatorcontrib><creatorcontrib>Rooney, William D.</creatorcontrib><creatorcontrib>NAIMS Cooperative</creatorcontrib><creatorcontrib>on behalf of the NAIMS Cooperative</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwartz, Daniel L.</au><au>Tagge, Ian</au><au>Powers, Katherine</au><au>Ahn, Sinyeob</au><au>Bakshi, Rohit</au><au>Calabresi, Peter A.</au><au>Todd Constable, R.</au><au>Grinstead, John</au><au>Henry, Roland G.</au><au>Nair, Govind</au><au>Papinutto, Nico</au><au>Pelletier, Daniel</au><au>Shinohara, Russell</au><au>Oh, Jiwon</au><au>Reich, Daniel S.</au><au>Sicotte, Nancy L.</au><au>Rooney, William D.</au><aucorp>NAIMS Cooperative</aucorp><aucorp>on behalf of the NAIMS Cooperative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisite reliability and repeatability of an advanced brain MRI protocol</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2019-09</date><risdate>2019</risdate><volume>50</volume><issue>3</issue><spage>878</spage><epage>888</epage><pages>878-888</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background MRI is the imaging modality of choice for diagnosis and intervention assessment in neurological disease. Its full potential has not been realized due in part to challenges in harmonizing advanced techniques across multiple sites. Purpose To develop a method for the assessment of reliability and repeatability of advanced multisite‐multisession neuroimaging studies and specifically to assess the reliability of an advanced MRI protocol, including multiband fMRI and diffusion tensor MRI, in a multisite setting. Study Type Prospective. Population Twice repeated measurement of a single subject with stable relapsing‐remitting multiple sclerosis (MS) at seven institutions. Field Strength/Sequence A 3 T MRI protocol included higher spatial resolution anatomical scans, a variable flip‐angle longitudinal relaxation rate constant (R1 ≡ 1/T1) measurement, quantitative magnetization transfer imaging, diffusion tensor imaging, and a resting‐state fMRI (rsFMRI) series. Assessment Multiple methods of assessing intrasite repeatability and intersite reliability were evaluated for imaging metrics derived from each sequence. Statistical Tests Student's t‐test, Pearson's r, and intraclass correlation coefficient (ICC) (2,1) were employed to assess repeatability and reliability. Two new statistical metrics are introduced that frame reliability and repeatability in the respective units of the measurements themselves. Results Intrasite repeatability was excellent for quantitative R1, magnetization transfer ratio (MTR), and diffusion‐weighted imaging (DWI) based metrics (r &gt; 0.95). rsFMRI metrics were less repeatable (r = 0.8). Intersite reliability was excellent for R1, MTR, and DWI (ICC &gt;0.9), and moderate for rsFMRI metrics (ICC∼0.4). Data Conclusion From most reliable to least, using a new reliability metric introduced here, MTR &gt; R1 &gt; DWI &gt; rsFMRI; for repeatability, MTR &gt; DWI &gt; R1 &gt; rsFMRI. A graphical method for at‐a‐glance assessment of reliability and repeatability, effect sizes, and outlier identification in multisite‐multisession neuroimaging studies is introduced. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:878–888.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30652391</pmid><doi>10.1002/jmri.26652</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5260-7117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2019-09, Vol.50 (3), p.878-888
issn 1053-1807
1522-2586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6636359
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Brain
Brain mapping
Correlation coefficient
Correlation coefficients
Data analysis
Diffusion rate
Field strength
Functional magnetic resonance imaging
Graphical methods
Longitude
Magnetic resonance imaging
Magnetization
Mathematical analysis
Medical imaging
MRI
Multiple sclerosis
multisite
Neuroimaging
Neurological diseases
Neurology
Outliers (statistics)
Population (statistical)
Population studies
reliability
Reliability analysis
repeatability
Reproducibility
Spatial discrimination
Spatial resolution
Statistical analysis
Statistical tests
Tensors
title Multisite reliability and repeatability of an advanced brain MRI protocol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisite%20reliability%20and%20repeatability%20of%20an%20advanced%20brain%20MRI%20protocol&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Schwartz,%20Daniel%20L.&rft.aucorp=NAIMS%20Cooperative&rft.date=2019-09&rft.volume=50&rft.issue=3&rft.spage=878&rft.epage=888&rft.pages=878-888&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26652&rft_dat=%3Cproquest_pubme%3E2179373910%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272173500&rft_id=info:pmid/30652391&rfr_iscdi=true