Multisite reliability and repeatability of an advanced brain MRI protocol
Background MRI is the imaging modality of choice for diagnosis and intervention assessment in neurological disease. Its full potential has not been realized due in part to challenges in harmonizing advanced techniques across multiple sites. Purpose To develop a method for the assessment of reliabili...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2019-09, Vol.50 (3), p.878-888 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 888 |
---|---|
container_issue | 3 |
container_start_page | 878 |
container_title | Journal of magnetic resonance imaging |
container_volume | 50 |
creator | Schwartz, Daniel L. Tagge, Ian Powers, Katherine Ahn, Sinyeob Bakshi, Rohit Calabresi, Peter A. Todd Constable, R. Grinstead, John Henry, Roland G. Nair, Govind Papinutto, Nico Pelletier, Daniel Shinohara, Russell Oh, Jiwon Reich, Daniel S. Sicotte, Nancy L. Rooney, William D. |
description | Background
MRI is the imaging modality of choice for diagnosis and intervention assessment in neurological disease. Its full potential has not been realized due in part to challenges in harmonizing advanced techniques across multiple sites.
Purpose
To develop a method for the assessment of reliability and repeatability of advanced multisite‐multisession neuroimaging studies and specifically to assess the reliability of an advanced MRI protocol, including multiband fMRI and diffusion tensor MRI, in a multisite setting.
Study Type
Prospective.
Population
Twice repeated measurement of a single subject with stable relapsing‐remitting multiple sclerosis (MS) at seven institutions.
Field Strength/Sequence
A 3 T MRI protocol included higher spatial resolution anatomical scans, a variable flip‐angle longitudinal relaxation rate constant (R1 ≡ 1/T1) measurement, quantitative magnetization transfer imaging, diffusion tensor imaging, and a resting‐state fMRI (rsFMRI) series.
Assessment
Multiple methods of assessing intrasite repeatability and intersite reliability were evaluated for imaging metrics derived from each sequence.
Statistical Tests
Student's t‐test, Pearson's r, and intraclass correlation coefficient (ICC) (2,1) were employed to assess repeatability and reliability. Two new statistical metrics are introduced that frame reliability and repeatability in the respective units of the measurements themselves.
Results
Intrasite repeatability was excellent for quantitative R1, magnetization transfer ratio (MTR), and diffusion‐weighted imaging (DWI) based metrics (r > 0.95). rsFMRI metrics were less repeatable (r = 0.8). Intersite reliability was excellent for R1, MTR, and DWI (ICC >0.9), and moderate for rsFMRI metrics (ICC∼0.4).
Data Conclusion
From most reliable to least, using a new reliability metric introduced here, MTR > R1 > DWI > rsFMRI; for repeatability, MTR > DWI > R1 > rsFMRI. A graphical method for at‐a‐glance assessment of reliability and repeatability, effect sizes, and outlier identification in multisite‐multisession neuroimaging studies is introduced.
Level of Evidence: 1
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2019;50:878–888. |
doi_str_mv | 10.1002/jmri.26652 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6636359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179373910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4962-c5435959e9d9408f8a453b1297f7d597805eea6062e3fd6199de013c613d70723</originalsourceid><addsrcrecordid>eNp9kUFrHCEUxyW0NGnaSz5AGOilBCZ96qjjJVBC02zJEijtWdzxTevijhudSdlvXzebLGkOPanPHz-f70_ICYVzCsA-LVfJnzMpBTsgR1QwVjPRyldlD4LXtAV1SN7mvAQArRvxhhxyKDDX9IjM5lMYffYjVgmDtwsf_Lip7ODKeY12fKrEvhQr6-7t0KGrFsn6oZp_n1XrFMfYxfCOvO5tyPj-cT0mP6--_Li8rm9uv84uP9_UXaMlqzvRcKGFRu10A23f2kbwBWVa9coJrVoQiFaCZMh7J6nWDoHyTlLuFCjGj8nFzrueFit0HQ5jssGsk1_ZtDHRevPvzeB_m1_x3kjJZXm6CD4-ClK8mzCPZuVzhyHYAeOUDaNKc1WmAwX98AJdxikN5XuGMVVALmBLne2oLsWcE_b7ZiiYbUJmm5B5SKjAp8_b36NPkRSA7oA_PuDmPyrzrYx_J_0L1Eea5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272173500</pqid></control><display><type>article</type><title>Multisite reliability and repeatability of an advanced brain MRI protocol</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Schwartz, Daniel L. ; Tagge, Ian ; Powers, Katherine ; Ahn, Sinyeob ; Bakshi, Rohit ; Calabresi, Peter A. ; Todd Constable, R. ; Grinstead, John ; Henry, Roland G. ; Nair, Govind ; Papinutto, Nico ; Pelletier, Daniel ; Shinohara, Russell ; Oh, Jiwon ; Reich, Daniel S. ; Sicotte, Nancy L. ; Rooney, William D.</creator><creatorcontrib>Schwartz, Daniel L. ; Tagge, Ian ; Powers, Katherine ; Ahn, Sinyeob ; Bakshi, Rohit ; Calabresi, Peter A. ; Todd Constable, R. ; Grinstead, John ; Henry, Roland G. ; Nair, Govind ; Papinutto, Nico ; Pelletier, Daniel ; Shinohara, Russell ; Oh, Jiwon ; Reich, Daniel S. ; Sicotte, Nancy L. ; Rooney, William D. ; NAIMS Cooperative ; on behalf of the NAIMS Cooperative</creatorcontrib><description>Background
MRI is the imaging modality of choice for diagnosis and intervention assessment in neurological disease. Its full potential has not been realized due in part to challenges in harmonizing advanced techniques across multiple sites.
Purpose
To develop a method for the assessment of reliability and repeatability of advanced multisite‐multisession neuroimaging studies and specifically to assess the reliability of an advanced MRI protocol, including multiband fMRI and diffusion tensor MRI, in a multisite setting.
Study Type
Prospective.
Population
Twice repeated measurement of a single subject with stable relapsing‐remitting multiple sclerosis (MS) at seven institutions.
Field Strength/Sequence
A 3 T MRI protocol included higher spatial resolution anatomical scans, a variable flip‐angle longitudinal relaxation rate constant (R1 ≡ 1/T1) measurement, quantitative magnetization transfer imaging, diffusion tensor imaging, and a resting‐state fMRI (rsFMRI) series.
Assessment
Multiple methods of assessing intrasite repeatability and intersite reliability were evaluated for imaging metrics derived from each sequence.
Statistical Tests
Student's t‐test, Pearson's r, and intraclass correlation coefficient (ICC) (2,1) were employed to assess repeatability and reliability. Two new statistical metrics are introduced that frame reliability and repeatability in the respective units of the measurements themselves.
Results
Intrasite repeatability was excellent for quantitative R1, magnetization transfer ratio (MTR), and diffusion‐weighted imaging (DWI) based metrics (r > 0.95). rsFMRI metrics were less repeatable (r = 0.8). Intersite reliability was excellent for R1, MTR, and DWI (ICC >0.9), and moderate for rsFMRI metrics (ICC∼0.4).
Data Conclusion
From most reliable to least, using a new reliability metric introduced here, MTR > R1 > DWI > rsFMRI; for repeatability, MTR > DWI > R1 > rsFMRI. A graphical method for at‐a‐glance assessment of reliability and repeatability, effect sizes, and outlier identification in multisite‐multisession neuroimaging studies is introduced.
Level of Evidence: 1
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2019;50:878–888.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26652</identifier><identifier>PMID: 30652391</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Brain ; Brain mapping ; Correlation coefficient ; Correlation coefficients ; Data analysis ; Diffusion rate ; Field strength ; Functional magnetic resonance imaging ; Graphical methods ; Longitude ; Magnetic resonance imaging ; Magnetization ; Mathematical analysis ; Medical imaging ; MRI ; Multiple sclerosis ; multisite ; Neuroimaging ; Neurological diseases ; Neurology ; Outliers (statistics) ; Population (statistical) ; Population studies ; reliability ; Reliability analysis ; repeatability ; Reproducibility ; Spatial discrimination ; Spatial resolution ; Statistical analysis ; Statistical tests ; Tensors</subject><ispartof>Journal of magnetic resonance imaging, 2019-09, Vol.50 (3), p.878-888</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4962-c5435959e9d9408f8a453b1297f7d597805eea6062e3fd6199de013c613d70723</citedby><cites>FETCH-LOGICAL-c4962-c5435959e9d9408f8a453b1297f7d597805eea6062e3fd6199de013c613d70723</cites><orcidid>0000-0002-5260-7117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.26652$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.26652$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30652391$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwartz, Daniel L.</creatorcontrib><creatorcontrib>Tagge, Ian</creatorcontrib><creatorcontrib>Powers, Katherine</creatorcontrib><creatorcontrib>Ahn, Sinyeob</creatorcontrib><creatorcontrib>Bakshi, Rohit</creatorcontrib><creatorcontrib>Calabresi, Peter A.</creatorcontrib><creatorcontrib>Todd Constable, R.</creatorcontrib><creatorcontrib>Grinstead, John</creatorcontrib><creatorcontrib>Henry, Roland G.</creatorcontrib><creatorcontrib>Nair, Govind</creatorcontrib><creatorcontrib>Papinutto, Nico</creatorcontrib><creatorcontrib>Pelletier, Daniel</creatorcontrib><creatorcontrib>Shinohara, Russell</creatorcontrib><creatorcontrib>Oh, Jiwon</creatorcontrib><creatorcontrib>Reich, Daniel S.</creatorcontrib><creatorcontrib>Sicotte, Nancy L.</creatorcontrib><creatorcontrib>Rooney, William D.</creatorcontrib><creatorcontrib>NAIMS Cooperative</creatorcontrib><creatorcontrib>on behalf of the NAIMS Cooperative</creatorcontrib><title>Multisite reliability and repeatability of an advanced brain MRI protocol</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background
MRI is the imaging modality of choice for diagnosis and intervention assessment in neurological disease. Its full potential has not been realized due in part to challenges in harmonizing advanced techniques across multiple sites.
Purpose
To develop a method for the assessment of reliability and repeatability of advanced multisite‐multisession neuroimaging studies and specifically to assess the reliability of an advanced MRI protocol, including multiband fMRI and diffusion tensor MRI, in a multisite setting.
Study Type
Prospective.
Population
Twice repeated measurement of a single subject with stable relapsing‐remitting multiple sclerosis (MS) at seven institutions.
Field Strength/Sequence
A 3 T MRI protocol included higher spatial resolution anatomical scans, a variable flip‐angle longitudinal relaxation rate constant (R1 ≡ 1/T1) measurement, quantitative magnetization transfer imaging, diffusion tensor imaging, and a resting‐state fMRI (rsFMRI) series.
Assessment
Multiple methods of assessing intrasite repeatability and intersite reliability were evaluated for imaging metrics derived from each sequence.
Statistical Tests
Student's t‐test, Pearson's r, and intraclass correlation coefficient (ICC) (2,1) were employed to assess repeatability and reliability. Two new statistical metrics are introduced that frame reliability and repeatability in the respective units of the measurements themselves.
Results
Intrasite repeatability was excellent for quantitative R1, magnetization transfer ratio (MTR), and diffusion‐weighted imaging (DWI) based metrics (r > 0.95). rsFMRI metrics were less repeatable (r = 0.8). Intersite reliability was excellent for R1, MTR, and DWI (ICC >0.9), and moderate for rsFMRI metrics (ICC∼0.4).
Data Conclusion
From most reliable to least, using a new reliability metric introduced here, MTR > R1 > DWI > rsFMRI; for repeatability, MTR > DWI > R1 > rsFMRI. A graphical method for at‐a‐glance assessment of reliability and repeatability, effect sizes, and outlier identification in multisite‐multisession neuroimaging studies is introduced.
Level of Evidence: 1
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2019;50:878–888.</description><subject>Brain</subject><subject>Brain mapping</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Data analysis</subject><subject>Diffusion rate</subject><subject>Field strength</subject><subject>Functional magnetic resonance imaging</subject><subject>Graphical methods</subject><subject>Longitude</subject><subject>Magnetic resonance imaging</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>MRI</subject><subject>Multiple sclerosis</subject><subject>multisite</subject><subject>Neuroimaging</subject><subject>Neurological diseases</subject><subject>Neurology</subject><subject>Outliers (statistics)</subject><subject>Population (statistical)</subject><subject>Population studies</subject><subject>reliability</subject><subject>Reliability analysis</subject><subject>repeatability</subject><subject>Reproducibility</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Tensors</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrHCEUxyW0NGnaSz5AGOilBCZ96qjjJVBC02zJEijtWdzxTevijhudSdlvXzebLGkOPanPHz-f70_ICYVzCsA-LVfJnzMpBTsgR1QwVjPRyldlD4LXtAV1SN7mvAQArRvxhhxyKDDX9IjM5lMYffYjVgmDtwsf_Lip7ODKeY12fKrEvhQr6-7t0KGrFsn6oZp_n1XrFMfYxfCOvO5tyPj-cT0mP6--_Li8rm9uv84uP9_UXaMlqzvRcKGFRu10A23f2kbwBWVa9coJrVoQiFaCZMh7J6nWDoHyTlLuFCjGj8nFzrueFit0HQ5jssGsk1_ZtDHRevPvzeB_m1_x3kjJZXm6CD4-ClK8mzCPZuVzhyHYAeOUDaNKc1WmAwX98AJdxikN5XuGMVVALmBLne2oLsWcE_b7ZiiYbUJmm5B5SKjAp8_b36NPkRSA7oA_PuDmPyrzrYx_J_0L1Eea5w</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Schwartz, Daniel L.</creator><creator>Tagge, Ian</creator><creator>Powers, Katherine</creator><creator>Ahn, Sinyeob</creator><creator>Bakshi, Rohit</creator><creator>Calabresi, Peter A.</creator><creator>Todd Constable, R.</creator><creator>Grinstead, John</creator><creator>Henry, Roland G.</creator><creator>Nair, Govind</creator><creator>Papinutto, Nico</creator><creator>Pelletier, Daniel</creator><creator>Shinohara, Russell</creator><creator>Oh, Jiwon</creator><creator>Reich, Daniel S.</creator><creator>Sicotte, Nancy L.</creator><creator>Rooney, William D.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5260-7117</orcidid></search><sort><creationdate>201909</creationdate><title>Multisite reliability and repeatability of an advanced brain MRI protocol</title><author>Schwartz, Daniel L. ; Tagge, Ian ; Powers, Katherine ; Ahn, Sinyeob ; Bakshi, Rohit ; Calabresi, Peter A. ; Todd Constable, R. ; Grinstead, John ; Henry, Roland G. ; Nair, Govind ; Papinutto, Nico ; Pelletier, Daniel ; Shinohara, Russell ; Oh, Jiwon ; Reich, Daniel S. ; Sicotte, Nancy L. ; Rooney, William D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4962-c5435959e9d9408f8a453b1297f7d597805eea6062e3fd6199de013c613d70723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brain</topic><topic>Brain mapping</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Data analysis</topic><topic>Diffusion rate</topic><topic>Field strength</topic><topic>Functional magnetic resonance imaging</topic><topic>Graphical methods</topic><topic>Longitude</topic><topic>Magnetic resonance imaging</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>MRI</topic><topic>Multiple sclerosis</topic><topic>multisite</topic><topic>Neuroimaging</topic><topic>Neurological diseases</topic><topic>Neurology</topic><topic>Outliers (statistics)</topic><topic>Population (statistical)</topic><topic>Population studies</topic><topic>reliability</topic><topic>Reliability analysis</topic><topic>repeatability</topic><topic>Reproducibility</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwartz, Daniel L.</creatorcontrib><creatorcontrib>Tagge, Ian</creatorcontrib><creatorcontrib>Powers, Katherine</creatorcontrib><creatorcontrib>Ahn, Sinyeob</creatorcontrib><creatorcontrib>Bakshi, Rohit</creatorcontrib><creatorcontrib>Calabresi, Peter A.</creatorcontrib><creatorcontrib>Todd Constable, R.</creatorcontrib><creatorcontrib>Grinstead, John</creatorcontrib><creatorcontrib>Henry, Roland G.</creatorcontrib><creatorcontrib>Nair, Govind</creatorcontrib><creatorcontrib>Papinutto, Nico</creatorcontrib><creatorcontrib>Pelletier, Daniel</creatorcontrib><creatorcontrib>Shinohara, Russell</creatorcontrib><creatorcontrib>Oh, Jiwon</creatorcontrib><creatorcontrib>Reich, Daniel S.</creatorcontrib><creatorcontrib>Sicotte, Nancy L.</creatorcontrib><creatorcontrib>Rooney, William D.</creatorcontrib><creatorcontrib>NAIMS Cooperative</creatorcontrib><creatorcontrib>on behalf of the NAIMS Cooperative</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwartz, Daniel L.</au><au>Tagge, Ian</au><au>Powers, Katherine</au><au>Ahn, Sinyeob</au><au>Bakshi, Rohit</au><au>Calabresi, Peter A.</au><au>Todd Constable, R.</au><au>Grinstead, John</au><au>Henry, Roland G.</au><au>Nair, Govind</au><au>Papinutto, Nico</au><au>Pelletier, Daniel</au><au>Shinohara, Russell</au><au>Oh, Jiwon</au><au>Reich, Daniel S.</au><au>Sicotte, Nancy L.</au><au>Rooney, William D.</au><aucorp>NAIMS Cooperative</aucorp><aucorp>on behalf of the NAIMS Cooperative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisite reliability and repeatability of an advanced brain MRI protocol</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2019-09</date><risdate>2019</risdate><volume>50</volume><issue>3</issue><spage>878</spage><epage>888</epage><pages>878-888</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background
MRI is the imaging modality of choice for diagnosis and intervention assessment in neurological disease. Its full potential has not been realized due in part to challenges in harmonizing advanced techniques across multiple sites.
Purpose
To develop a method for the assessment of reliability and repeatability of advanced multisite‐multisession neuroimaging studies and specifically to assess the reliability of an advanced MRI protocol, including multiband fMRI and diffusion tensor MRI, in a multisite setting.
Study Type
Prospective.
Population
Twice repeated measurement of a single subject with stable relapsing‐remitting multiple sclerosis (MS) at seven institutions.
Field Strength/Sequence
A 3 T MRI protocol included higher spatial resolution anatomical scans, a variable flip‐angle longitudinal relaxation rate constant (R1 ≡ 1/T1) measurement, quantitative magnetization transfer imaging, diffusion tensor imaging, and a resting‐state fMRI (rsFMRI) series.
Assessment
Multiple methods of assessing intrasite repeatability and intersite reliability were evaluated for imaging metrics derived from each sequence.
Statistical Tests
Student's t‐test, Pearson's r, and intraclass correlation coefficient (ICC) (2,1) were employed to assess repeatability and reliability. Two new statistical metrics are introduced that frame reliability and repeatability in the respective units of the measurements themselves.
Results
Intrasite repeatability was excellent for quantitative R1, magnetization transfer ratio (MTR), and diffusion‐weighted imaging (DWI) based metrics (r > 0.95). rsFMRI metrics were less repeatable (r = 0.8). Intersite reliability was excellent for R1, MTR, and DWI (ICC >0.9), and moderate for rsFMRI metrics (ICC∼0.4).
Data Conclusion
From most reliable to least, using a new reliability metric introduced here, MTR > R1 > DWI > rsFMRI; for repeatability, MTR > DWI > R1 > rsFMRI. A graphical method for at‐a‐glance assessment of reliability and repeatability, effect sizes, and outlier identification in multisite‐multisession neuroimaging studies is introduced.
Level of Evidence: 1
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2019;50:878–888.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30652391</pmid><doi>10.1002/jmri.26652</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5260-7117</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2019-09, Vol.50 (3), p.878-888 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6636359 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content |
subjects | Brain Brain mapping Correlation coefficient Correlation coefficients Data analysis Diffusion rate Field strength Functional magnetic resonance imaging Graphical methods Longitude Magnetic resonance imaging Magnetization Mathematical analysis Medical imaging MRI Multiple sclerosis multisite Neuroimaging Neurological diseases Neurology Outliers (statistics) Population (statistical) Population studies reliability Reliability analysis repeatability Reproducibility Spatial discrimination Spatial resolution Statistical analysis Statistical tests Tensors |
title | Multisite reliability and repeatability of an advanced brain MRI protocol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisite%20reliability%20and%20repeatability%20of%20an%20advanced%20brain%20MRI%20protocol&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Schwartz,%20Daniel%20L.&rft.aucorp=NAIMS%20Cooperative&rft.date=2019-09&rft.volume=50&rft.issue=3&rft.spage=878&rft.epage=888&rft.pages=878-888&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26652&rft_dat=%3Cproquest_pubme%3E2179373910%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272173500&rft_id=info:pmid/30652391&rfr_iscdi=true |