Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment

Presence of cytotoxic CD8 T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like rece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2018-08, Vol.78 (15), p.4292-4302
Hauptverfasser: Theodoraki, Marie-Nicole, Yerneni, Saigopalakrishna, Sarkar, Saumendra N, Orr, Brian, Muthuswamy, Ravikumar, Voyten, Jamie, Modugno, Francesmary, Jiang, Weijian, Grimm, Melissa, Basse, Per H, Bartlett, David L, Edwards, Robert P, Kalinski, Pawel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4302
container_issue 15
container_start_page 4292
container_title Cancer research (Chicago, Ill.)
container_volume 78
creator Theodoraki, Marie-Nicole
Yerneni, Saigopalakrishna
Sarkar, Saumendra N
Orr, Brian
Muthuswamy, Ravikumar
Voyten, Jamie
Modugno, Francesmary
Jiang, Weijian
Grimm, Melissa
Basse, Per H
Bartlett, David L
Edwards, Robert P
Kalinski, Pawel
description Presence of cytotoxic CD8 T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to -treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB- and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity. This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies. .
doi_str_mv 10.1158/0008-5472.CAN-17-3985
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6636317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049560316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-e1dbcbc1c5ae5350f525e3281ac2da8c4a30be6292ec6fac665eab9f6306f5d43</originalsourceid><addsrcrecordid>eNpdkdGO1CAUhonRuOPqI2hIvPGmK5TCtDcmY3WdSXZnjVkT7wilpw6bAhXaMfsqPooP4TNJnd2JekUI3__B4UfoOSVnlPLyNSGkzHixzM_q1Tajy4xVJX-AFpSzMlsWBX-IFkfmBD2J8SZtOSX8MTrJE8sEKRboxxp6o1WE7F0we3B4pUezV6PxDvsOb89__Xyb1VdfcvxRjbvv6hZfQmvUCBGPO8Abayfn4zQMAWJMAlx7O3gHbpzjbfy0Xd2bN67rlbUHt3F_8uvJKoevJ-sDvjQ6eHB7E7yzSfAUPepUH-HZ3XqKPp-_v67X2cXVh029ush0UdExA9o2utFUcwWccdLxnAPLS6p03qpSF4qRBkRe5aBFp7QQHFRTdYIR0fG2YKfozcE7TI2FVqerg-rlEIxV4VZ6ZeS_J87s5Fe_l0IwwegyCV7dCYL_NkEcpTVRQ98rB36KMidFxQVhVCT05X_ojZ-CS-MlqiQFKzmtEsUPVPqQGAN0x8dQIuf25dysnJuVqX1Jl3JuP-Ve_D3JMXVfN_sNSxevug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080438519</pqid></control><display><type>article</type><title>Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Theodoraki, Marie-Nicole ; Yerneni, Saigopalakrishna ; Sarkar, Saumendra N ; Orr, Brian ; Muthuswamy, Ravikumar ; Voyten, Jamie ; Modugno, Francesmary ; Jiang, Weijian ; Grimm, Melissa ; Basse, Per H ; Bartlett, David L ; Edwards, Robert P ; Kalinski, Pawel</creator><creatorcontrib>Theodoraki, Marie-Nicole ; Yerneni, Saigopalakrishna ; Sarkar, Saumendra N ; Orr, Brian ; Muthuswamy, Ravikumar ; Voyten, Jamie ; Modugno, Francesmary ; Jiang, Weijian ; Grimm, Melissa ; Basse, Per H ; Bartlett, David L ; Edwards, Robert P ; Kalinski, Pawel</creatorcontrib><description>Presence of cytotoxic CD8 T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to -treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB- and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity. This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies. .</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-17-3985</identifier><identifier>PMID: 29853604</identifier><language>eng</language><publisher>United States: American Association for Cancer Research, Inc</publisher><subject>Adjuvants ; Adult ; Aged ; Animals ; Antitumor activity ; Attractants ; Cancer ; CCL22 protein ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell culture ; Chemotaxis ; CXCL10 protein ; CXCL12 protein ; Cyclooxygenase 2 - immunology ; Cyclooxygenase 2 - metabolism ; Cyclooxygenase-2 ; Cytotoxicity ; DNA helicase ; Double-stranded RNA ; Female ; Humans ; Immune Tolerance - immunology ; Immunostimulation ; Immunosuppression ; Immunotherapy ; Inflammation - immunology ; Inflammation - metabolism ; Interferon regulatory factor 3 ; Interferon Regulatory Factor-3 - immunology ; Interferon Regulatory Factor-3 - metabolism ; Interleukin 1 ; Interleukin 10 ; Lymphocytes ; Lymphocytes T ; Mice ; Mice, Inbred C57BL ; Microenvironments ; Middle Aged ; NF-kappa B - immunology ; NF-kappa B - metabolism ; NF-κB protein ; Ovarian Neoplasms - immunology ; Ovarian Neoplasms - metabolism ; Polyinosinic:polycytidylic acid ; Prostaglandin E2 ; Rats ; Ribonucleic acid ; RNA ; RNA Helicases - immunology ; RNA Helicases - metabolism ; RNA, Double-Stranded - immunology ; RNA, Double-Stranded - metabolism ; Signal transduction ; Signal Transduction - immunology ; Toll-like receptors ; Tumor Cells, Cultured ; Tumor Microenvironment - immunology ; Tumor Necrosis Factor-alpha - immunology ; Tumor Necrosis Factor-alpha - metabolism ; Tumors ; Viruses</subject><ispartof>Cancer research (Chicago, Ill.), 2018-08, Vol.78 (15), p.4292-4302</ispartof><rights>2018 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research, Inc. Aug 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-e1dbcbc1c5ae5350f525e3281ac2da8c4a30be6292ec6fac665eab9f6306f5d43</citedby><cites>FETCH-LOGICAL-c491t-e1dbcbc1c5ae5350f525e3281ac2da8c4a30be6292ec6fac665eab9f6306f5d43</cites><orcidid>0000-0002-2850-6121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,3360,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29853604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Theodoraki, Marie-Nicole</creatorcontrib><creatorcontrib>Yerneni, Saigopalakrishna</creatorcontrib><creatorcontrib>Sarkar, Saumendra N</creatorcontrib><creatorcontrib>Orr, Brian</creatorcontrib><creatorcontrib>Muthuswamy, Ravikumar</creatorcontrib><creatorcontrib>Voyten, Jamie</creatorcontrib><creatorcontrib>Modugno, Francesmary</creatorcontrib><creatorcontrib>Jiang, Weijian</creatorcontrib><creatorcontrib>Grimm, Melissa</creatorcontrib><creatorcontrib>Basse, Per H</creatorcontrib><creatorcontrib>Bartlett, David L</creatorcontrib><creatorcontrib>Edwards, Robert P</creatorcontrib><creatorcontrib>Kalinski, Pawel</creatorcontrib><title>Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Presence of cytotoxic CD8 T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to -treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB- and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity. This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies. .</description><subject>Adjuvants</subject><subject>Adult</subject><subject>Aged</subject><subject>Animals</subject><subject>Antitumor activity</subject><subject>Attractants</subject><subject>Cancer</subject><subject>CCL22 protein</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell culture</subject><subject>Chemotaxis</subject><subject>CXCL10 protein</subject><subject>CXCL12 protein</subject><subject>Cyclooxygenase 2 - immunology</subject><subject>Cyclooxygenase 2 - metabolism</subject><subject>Cyclooxygenase-2</subject><subject>Cytotoxicity</subject><subject>DNA helicase</subject><subject>Double-stranded RNA</subject><subject>Female</subject><subject>Humans</subject><subject>Immune Tolerance - immunology</subject><subject>Immunostimulation</subject><subject>Immunosuppression</subject><subject>Immunotherapy</subject><subject>Inflammation - immunology</subject><subject>Inflammation - metabolism</subject><subject>Interferon regulatory factor 3</subject><subject>Interferon Regulatory Factor-3 - immunology</subject><subject>Interferon Regulatory Factor-3 - metabolism</subject><subject>Interleukin 1</subject><subject>Interleukin 10</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microenvironments</subject><subject>Middle Aged</subject><subject>NF-kappa B - immunology</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Ovarian Neoplasms - immunology</subject><subject>Ovarian Neoplasms - metabolism</subject><subject>Polyinosinic:polycytidylic acid</subject><subject>Prostaglandin E2</subject><subject>Rats</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Helicases - immunology</subject><subject>RNA Helicases - metabolism</subject><subject>RNA, Double-Stranded - immunology</subject><subject>RNA, Double-Stranded - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - immunology</subject><subject>Toll-like receptors</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumor Necrosis Factor-alpha - immunology</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumors</subject><subject>Viruses</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkdGO1CAUhonRuOPqI2hIvPGmK5TCtDcmY3WdSXZnjVkT7wilpw6bAhXaMfsqPooP4TNJnd2JekUI3__B4UfoOSVnlPLyNSGkzHixzM_q1Tajy4xVJX-AFpSzMlsWBX-IFkfmBD2J8SZtOSX8MTrJE8sEKRboxxp6o1WE7F0we3B4pUezV6PxDvsOb89__Xyb1VdfcvxRjbvv6hZfQmvUCBGPO8Abayfn4zQMAWJMAlx7O3gHbpzjbfy0Xd2bN67rlbUHt3F_8uvJKoevJ-sDvjQ6eHB7E7yzSfAUPepUH-HZ3XqKPp-_v67X2cXVh029ush0UdExA9o2utFUcwWccdLxnAPLS6p03qpSF4qRBkRe5aBFp7QQHFRTdYIR0fG2YKfozcE7TI2FVqerg-rlEIxV4VZ6ZeS_J87s5Fe_l0IwwegyCV7dCYL_NkEcpTVRQ98rB36KMidFxQVhVCT05X_ojZ-CS-MlqiQFKzmtEsUPVPqQGAN0x8dQIuf25dysnJuVqX1Jl3JuP-Ve_D3JMXVfN_sNSxevug</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Theodoraki, Marie-Nicole</creator><creator>Yerneni, Saigopalakrishna</creator><creator>Sarkar, Saumendra N</creator><creator>Orr, Brian</creator><creator>Muthuswamy, Ravikumar</creator><creator>Voyten, Jamie</creator><creator>Modugno, Francesmary</creator><creator>Jiang, Weijian</creator><creator>Grimm, Melissa</creator><creator>Basse, Per H</creator><creator>Bartlett, David L</creator><creator>Edwards, Robert P</creator><creator>Kalinski, Pawel</creator><general>American Association for Cancer Research, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2850-6121</orcidid></search><sort><creationdate>20180801</creationdate><title>Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment</title><author>Theodoraki, Marie-Nicole ; Yerneni, Saigopalakrishna ; Sarkar, Saumendra N ; Orr, Brian ; Muthuswamy, Ravikumar ; Voyten, Jamie ; Modugno, Francesmary ; Jiang, Weijian ; Grimm, Melissa ; Basse, Per H ; Bartlett, David L ; Edwards, Robert P ; Kalinski, Pawel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-e1dbcbc1c5ae5350f525e3281ac2da8c4a30be6292ec6fac665eab9f6306f5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adjuvants</topic><topic>Adult</topic><topic>Aged</topic><topic>Animals</topic><topic>Antitumor activity</topic><topic>Attractants</topic><topic>Cancer</topic><topic>CCL22 protein</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell culture</topic><topic>Chemotaxis</topic><topic>CXCL10 protein</topic><topic>CXCL12 protein</topic><topic>Cyclooxygenase 2 - immunology</topic><topic>Cyclooxygenase 2 - metabolism</topic><topic>Cyclooxygenase-2</topic><topic>Cytotoxicity</topic><topic>DNA helicase</topic><topic>Double-stranded RNA</topic><topic>Female</topic><topic>Humans</topic><topic>Immune Tolerance - immunology</topic><topic>Immunostimulation</topic><topic>Immunosuppression</topic><topic>Immunotherapy</topic><topic>Inflammation - immunology</topic><topic>Inflammation - metabolism</topic><topic>Interferon regulatory factor 3</topic><topic>Interferon Regulatory Factor-3 - immunology</topic><topic>Interferon Regulatory Factor-3 - metabolism</topic><topic>Interleukin 1</topic><topic>Interleukin 10</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microenvironments</topic><topic>Middle Aged</topic><topic>NF-kappa B - immunology</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Ovarian Neoplasms - immunology</topic><topic>Ovarian Neoplasms - metabolism</topic><topic>Polyinosinic:polycytidylic acid</topic><topic>Prostaglandin E2</topic><topic>Rats</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Helicases - immunology</topic><topic>RNA Helicases - metabolism</topic><topic>RNA, Double-Stranded - immunology</topic><topic>RNA, Double-Stranded - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - immunology</topic><topic>Toll-like receptors</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumor Necrosis Factor-alpha - immunology</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumors</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theodoraki, Marie-Nicole</creatorcontrib><creatorcontrib>Yerneni, Saigopalakrishna</creatorcontrib><creatorcontrib>Sarkar, Saumendra N</creatorcontrib><creatorcontrib>Orr, Brian</creatorcontrib><creatorcontrib>Muthuswamy, Ravikumar</creatorcontrib><creatorcontrib>Voyten, Jamie</creatorcontrib><creatorcontrib>Modugno, Francesmary</creatorcontrib><creatorcontrib>Jiang, Weijian</creatorcontrib><creatorcontrib>Grimm, Melissa</creatorcontrib><creatorcontrib>Basse, Per H</creatorcontrib><creatorcontrib>Bartlett, David L</creatorcontrib><creatorcontrib>Edwards, Robert P</creatorcontrib><creatorcontrib>Kalinski, Pawel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theodoraki, Marie-Nicole</au><au>Yerneni, Saigopalakrishna</au><au>Sarkar, Saumendra N</au><au>Orr, Brian</au><au>Muthuswamy, Ravikumar</au><au>Voyten, Jamie</au><au>Modugno, Francesmary</au><au>Jiang, Weijian</au><au>Grimm, Melissa</au><au>Basse, Per H</au><au>Bartlett, David L</au><au>Edwards, Robert P</au><au>Kalinski, Pawel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>78</volume><issue>15</issue><spage>4292</spage><epage>4302</epage><pages>4292-4302</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Presence of cytotoxic CD8 T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to -treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB- and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity. This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies. .</abstract><cop>United States</cop><pub>American Association for Cancer Research, Inc</pub><pmid>29853604</pmid><doi>10.1158/0008-5472.CAN-17-3985</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2850-6121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2018-08, Vol.78 (15), p.4292-4302
issn 0008-5472
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6636317
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adjuvants
Adult
Aged
Animals
Antitumor activity
Attractants
Cancer
CCL22 protein
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Cell culture
Chemotaxis
CXCL10 protein
CXCL12 protein
Cyclooxygenase 2 - immunology
Cyclooxygenase 2 - metabolism
Cyclooxygenase-2
Cytotoxicity
DNA helicase
Double-stranded RNA
Female
Humans
Immune Tolerance - immunology
Immunostimulation
Immunosuppression
Immunotherapy
Inflammation - immunology
Inflammation - metabolism
Interferon regulatory factor 3
Interferon Regulatory Factor-3 - immunology
Interferon Regulatory Factor-3 - metabolism
Interleukin 1
Interleukin 10
Lymphocytes
Lymphocytes T
Mice
Mice, Inbred C57BL
Microenvironments
Middle Aged
NF-kappa B - immunology
NF-kappa B - metabolism
NF-κB protein
Ovarian Neoplasms - immunology
Ovarian Neoplasms - metabolism
Polyinosinic:polycytidylic acid
Prostaglandin E2
Rats
Ribonucleic acid
RNA
RNA Helicases - immunology
RNA Helicases - metabolism
RNA, Double-Stranded - immunology
RNA, Double-Stranded - metabolism
Signal transduction
Signal Transduction - immunology
Toll-like receptors
Tumor Cells, Cultured
Tumor Microenvironment - immunology
Tumor Necrosis Factor-alpha - immunology
Tumor Necrosis Factor-alpha - metabolism
Tumors
Viruses
title Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T17%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helicase-Driven%20Activation%20of%20NF%CE%BAB-COX2%20Pathway%20Mediates%20the%20Immunosuppressive%20Component%20of%20dsRNA-Driven%20Inflammation%20in%20the%20Human%20Tumor%20Microenvironment&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Theodoraki,%20Marie-Nicole&rft.date=2018-08-01&rft.volume=78&rft.issue=15&rft.spage=4292&rft.epage=4302&rft.pages=4292-4302&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-17-3985&rft_dat=%3Cproquest_pubme%3E2049560316%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080438519&rft_id=info:pmid/29853604&rfr_iscdi=true