Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment
Presence of cytotoxic CD8 T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like rece...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2018-08, Vol.78 (15), p.4292-4302 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4302 |
---|---|
container_issue | 15 |
container_start_page | 4292 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 78 |
creator | Theodoraki, Marie-Nicole Yerneni, Saigopalakrishna Sarkar, Saumendra N Orr, Brian Muthuswamy, Ravikumar Voyten, Jamie Modugno, Francesmary Jiang, Weijian Grimm, Melissa Basse, Per H Bartlett, David L Edwards, Robert P Kalinski, Pawel |
description | Presence of cytotoxic CD8
T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C
U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to
-treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB- and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity.
This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies.
. |
doi_str_mv | 10.1158/0008-5472.CAN-17-3985 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6636317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049560316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-e1dbcbc1c5ae5350f525e3281ac2da8c4a30be6292ec6fac665eab9f6306f5d43</originalsourceid><addsrcrecordid>eNpdkdGO1CAUhonRuOPqI2hIvPGmK5TCtDcmY3WdSXZnjVkT7wilpw6bAhXaMfsqPooP4TNJnd2JekUI3__B4UfoOSVnlPLyNSGkzHixzM_q1Tajy4xVJX-AFpSzMlsWBX-IFkfmBD2J8SZtOSX8MTrJE8sEKRboxxp6o1WE7F0we3B4pUezV6PxDvsOb89__Xyb1VdfcvxRjbvv6hZfQmvUCBGPO8Abayfn4zQMAWJMAlx7O3gHbpzjbfy0Xd2bN67rlbUHt3F_8uvJKoevJ-sDvjQ6eHB7E7yzSfAUPepUH-HZ3XqKPp-_v67X2cXVh029ush0UdExA9o2utFUcwWccdLxnAPLS6p03qpSF4qRBkRe5aBFp7QQHFRTdYIR0fG2YKfozcE7TI2FVqerg-rlEIxV4VZ6ZeS_J87s5Fe_l0IwwegyCV7dCYL_NkEcpTVRQ98rB36KMidFxQVhVCT05X_ojZ-CS-MlqiQFKzmtEsUPVPqQGAN0x8dQIuf25dysnJuVqX1Jl3JuP-Ve_D3JMXVfN_sNSxevug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080438519</pqid></control><display><type>article</type><title>Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Theodoraki, Marie-Nicole ; Yerneni, Saigopalakrishna ; Sarkar, Saumendra N ; Orr, Brian ; Muthuswamy, Ravikumar ; Voyten, Jamie ; Modugno, Francesmary ; Jiang, Weijian ; Grimm, Melissa ; Basse, Per H ; Bartlett, David L ; Edwards, Robert P ; Kalinski, Pawel</creator><creatorcontrib>Theodoraki, Marie-Nicole ; Yerneni, Saigopalakrishna ; Sarkar, Saumendra N ; Orr, Brian ; Muthuswamy, Ravikumar ; Voyten, Jamie ; Modugno, Francesmary ; Jiang, Weijian ; Grimm, Melissa ; Basse, Per H ; Bartlett, David L ; Edwards, Robert P ; Kalinski, Pawel</creatorcontrib><description>Presence of cytotoxic CD8
T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C
U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to
-treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB- and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity.
This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies.
.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-17-3985</identifier><identifier>PMID: 29853604</identifier><language>eng</language><publisher>United States: American Association for Cancer Research, Inc</publisher><subject>Adjuvants ; Adult ; Aged ; Animals ; Antitumor activity ; Attractants ; Cancer ; CCL22 protein ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell culture ; Chemotaxis ; CXCL10 protein ; CXCL12 protein ; Cyclooxygenase 2 - immunology ; Cyclooxygenase 2 - metabolism ; Cyclooxygenase-2 ; Cytotoxicity ; DNA helicase ; Double-stranded RNA ; Female ; Humans ; Immune Tolerance - immunology ; Immunostimulation ; Immunosuppression ; Immunotherapy ; Inflammation - immunology ; Inflammation - metabolism ; Interferon regulatory factor 3 ; Interferon Regulatory Factor-3 - immunology ; Interferon Regulatory Factor-3 - metabolism ; Interleukin 1 ; Interleukin 10 ; Lymphocytes ; Lymphocytes T ; Mice ; Mice, Inbred C57BL ; Microenvironments ; Middle Aged ; NF-kappa B - immunology ; NF-kappa B - metabolism ; NF-κB protein ; Ovarian Neoplasms - immunology ; Ovarian Neoplasms - metabolism ; Polyinosinic:polycytidylic acid ; Prostaglandin E2 ; Rats ; Ribonucleic acid ; RNA ; RNA Helicases - immunology ; RNA Helicases - metabolism ; RNA, Double-Stranded - immunology ; RNA, Double-Stranded - metabolism ; Signal transduction ; Signal Transduction - immunology ; Toll-like receptors ; Tumor Cells, Cultured ; Tumor Microenvironment - immunology ; Tumor Necrosis Factor-alpha - immunology ; Tumor Necrosis Factor-alpha - metabolism ; Tumors ; Viruses</subject><ispartof>Cancer research (Chicago, Ill.), 2018-08, Vol.78 (15), p.4292-4302</ispartof><rights>2018 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research, Inc. Aug 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-e1dbcbc1c5ae5350f525e3281ac2da8c4a30be6292ec6fac665eab9f6306f5d43</citedby><cites>FETCH-LOGICAL-c491t-e1dbcbc1c5ae5350f525e3281ac2da8c4a30be6292ec6fac665eab9f6306f5d43</cites><orcidid>0000-0002-2850-6121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,3360,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29853604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Theodoraki, Marie-Nicole</creatorcontrib><creatorcontrib>Yerneni, Saigopalakrishna</creatorcontrib><creatorcontrib>Sarkar, Saumendra N</creatorcontrib><creatorcontrib>Orr, Brian</creatorcontrib><creatorcontrib>Muthuswamy, Ravikumar</creatorcontrib><creatorcontrib>Voyten, Jamie</creatorcontrib><creatorcontrib>Modugno, Francesmary</creatorcontrib><creatorcontrib>Jiang, Weijian</creatorcontrib><creatorcontrib>Grimm, Melissa</creatorcontrib><creatorcontrib>Basse, Per H</creatorcontrib><creatorcontrib>Bartlett, David L</creatorcontrib><creatorcontrib>Edwards, Robert P</creatorcontrib><creatorcontrib>Kalinski, Pawel</creatorcontrib><title>Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Presence of cytotoxic CD8
T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C
U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to
-treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB- and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity.
This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies.
.</description><subject>Adjuvants</subject><subject>Adult</subject><subject>Aged</subject><subject>Animals</subject><subject>Antitumor activity</subject><subject>Attractants</subject><subject>Cancer</subject><subject>CCL22 protein</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell culture</subject><subject>Chemotaxis</subject><subject>CXCL10 protein</subject><subject>CXCL12 protein</subject><subject>Cyclooxygenase 2 - immunology</subject><subject>Cyclooxygenase 2 - metabolism</subject><subject>Cyclooxygenase-2</subject><subject>Cytotoxicity</subject><subject>DNA helicase</subject><subject>Double-stranded RNA</subject><subject>Female</subject><subject>Humans</subject><subject>Immune Tolerance - immunology</subject><subject>Immunostimulation</subject><subject>Immunosuppression</subject><subject>Immunotherapy</subject><subject>Inflammation - immunology</subject><subject>Inflammation - metabolism</subject><subject>Interferon regulatory factor 3</subject><subject>Interferon Regulatory Factor-3 - immunology</subject><subject>Interferon Regulatory Factor-3 - metabolism</subject><subject>Interleukin 1</subject><subject>Interleukin 10</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microenvironments</subject><subject>Middle Aged</subject><subject>NF-kappa B - immunology</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Ovarian Neoplasms - immunology</subject><subject>Ovarian Neoplasms - metabolism</subject><subject>Polyinosinic:polycytidylic acid</subject><subject>Prostaglandin E2</subject><subject>Rats</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Helicases - immunology</subject><subject>RNA Helicases - metabolism</subject><subject>RNA, Double-Stranded - immunology</subject><subject>RNA, Double-Stranded - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - immunology</subject><subject>Toll-like receptors</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumor Necrosis Factor-alpha - immunology</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumors</subject><subject>Viruses</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkdGO1CAUhonRuOPqI2hIvPGmK5TCtDcmY3WdSXZnjVkT7wilpw6bAhXaMfsqPooP4TNJnd2JekUI3__B4UfoOSVnlPLyNSGkzHixzM_q1Tajy4xVJX-AFpSzMlsWBX-IFkfmBD2J8SZtOSX8MTrJE8sEKRboxxp6o1WE7F0we3B4pUezV6PxDvsOb89__Xyb1VdfcvxRjbvv6hZfQmvUCBGPO8Abayfn4zQMAWJMAlx7O3gHbpzjbfy0Xd2bN67rlbUHt3F_8uvJKoevJ-sDvjQ6eHB7E7yzSfAUPepUH-HZ3XqKPp-_v67X2cXVh029ush0UdExA9o2utFUcwWccdLxnAPLS6p03qpSF4qRBkRe5aBFp7QQHFRTdYIR0fG2YKfozcE7TI2FVqerg-rlEIxV4VZ6ZeS_J87s5Fe_l0IwwegyCV7dCYL_NkEcpTVRQ98rB36KMidFxQVhVCT05X_ojZ-CS-MlqiQFKzmtEsUPVPqQGAN0x8dQIuf25dysnJuVqX1Jl3JuP-Ve_D3JMXVfN_sNSxevug</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Theodoraki, Marie-Nicole</creator><creator>Yerneni, Saigopalakrishna</creator><creator>Sarkar, Saumendra N</creator><creator>Orr, Brian</creator><creator>Muthuswamy, Ravikumar</creator><creator>Voyten, Jamie</creator><creator>Modugno, Francesmary</creator><creator>Jiang, Weijian</creator><creator>Grimm, Melissa</creator><creator>Basse, Per H</creator><creator>Bartlett, David L</creator><creator>Edwards, Robert P</creator><creator>Kalinski, Pawel</creator><general>American Association for Cancer Research, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2850-6121</orcidid></search><sort><creationdate>20180801</creationdate><title>Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment</title><author>Theodoraki, Marie-Nicole ; Yerneni, Saigopalakrishna ; Sarkar, Saumendra N ; Orr, Brian ; Muthuswamy, Ravikumar ; Voyten, Jamie ; Modugno, Francesmary ; Jiang, Weijian ; Grimm, Melissa ; Basse, Per H ; Bartlett, David L ; Edwards, Robert P ; Kalinski, Pawel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-e1dbcbc1c5ae5350f525e3281ac2da8c4a30be6292ec6fac665eab9f6306f5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adjuvants</topic><topic>Adult</topic><topic>Aged</topic><topic>Animals</topic><topic>Antitumor activity</topic><topic>Attractants</topic><topic>Cancer</topic><topic>CCL22 protein</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell culture</topic><topic>Chemotaxis</topic><topic>CXCL10 protein</topic><topic>CXCL12 protein</topic><topic>Cyclooxygenase 2 - immunology</topic><topic>Cyclooxygenase 2 - metabolism</topic><topic>Cyclooxygenase-2</topic><topic>Cytotoxicity</topic><topic>DNA helicase</topic><topic>Double-stranded RNA</topic><topic>Female</topic><topic>Humans</topic><topic>Immune Tolerance - immunology</topic><topic>Immunostimulation</topic><topic>Immunosuppression</topic><topic>Immunotherapy</topic><topic>Inflammation - immunology</topic><topic>Inflammation - metabolism</topic><topic>Interferon regulatory factor 3</topic><topic>Interferon Regulatory Factor-3 - immunology</topic><topic>Interferon Regulatory Factor-3 - metabolism</topic><topic>Interleukin 1</topic><topic>Interleukin 10</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microenvironments</topic><topic>Middle Aged</topic><topic>NF-kappa B - immunology</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Ovarian Neoplasms - immunology</topic><topic>Ovarian Neoplasms - metabolism</topic><topic>Polyinosinic:polycytidylic acid</topic><topic>Prostaglandin E2</topic><topic>Rats</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Helicases - immunology</topic><topic>RNA Helicases - metabolism</topic><topic>RNA, Double-Stranded - immunology</topic><topic>RNA, Double-Stranded - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - immunology</topic><topic>Toll-like receptors</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumor Necrosis Factor-alpha - immunology</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumors</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theodoraki, Marie-Nicole</creatorcontrib><creatorcontrib>Yerneni, Saigopalakrishna</creatorcontrib><creatorcontrib>Sarkar, Saumendra N</creatorcontrib><creatorcontrib>Orr, Brian</creatorcontrib><creatorcontrib>Muthuswamy, Ravikumar</creatorcontrib><creatorcontrib>Voyten, Jamie</creatorcontrib><creatorcontrib>Modugno, Francesmary</creatorcontrib><creatorcontrib>Jiang, Weijian</creatorcontrib><creatorcontrib>Grimm, Melissa</creatorcontrib><creatorcontrib>Basse, Per H</creatorcontrib><creatorcontrib>Bartlett, David L</creatorcontrib><creatorcontrib>Edwards, Robert P</creatorcontrib><creatorcontrib>Kalinski, Pawel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theodoraki, Marie-Nicole</au><au>Yerneni, Saigopalakrishna</au><au>Sarkar, Saumendra N</au><au>Orr, Brian</au><au>Muthuswamy, Ravikumar</au><au>Voyten, Jamie</au><au>Modugno, Francesmary</au><au>Jiang, Weijian</au><au>Grimm, Melissa</au><au>Basse, Per H</au><au>Bartlett, David L</au><au>Edwards, Robert P</au><au>Kalinski, Pawel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>78</volume><issue>15</issue><spage>4292</spage><epage>4302</epage><pages>4292-4302</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Presence of cytotoxic CD8
T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C
U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to
-treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB- and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity.
This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies.
.</abstract><cop>United States</cop><pub>American Association for Cancer Research, Inc</pub><pmid>29853604</pmid><doi>10.1158/0008-5472.CAN-17-3985</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2850-6121</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2018-08, Vol.78 (15), p.4292-4302 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6636317 |
source | MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adjuvants Adult Aged Animals Antitumor activity Attractants Cancer CCL22 protein CD8 antigen CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Cell culture Chemotaxis CXCL10 protein CXCL12 protein Cyclooxygenase 2 - immunology Cyclooxygenase 2 - metabolism Cyclooxygenase-2 Cytotoxicity DNA helicase Double-stranded RNA Female Humans Immune Tolerance - immunology Immunostimulation Immunosuppression Immunotherapy Inflammation - immunology Inflammation - metabolism Interferon regulatory factor 3 Interferon Regulatory Factor-3 - immunology Interferon Regulatory Factor-3 - metabolism Interleukin 1 Interleukin 10 Lymphocytes Lymphocytes T Mice Mice, Inbred C57BL Microenvironments Middle Aged NF-kappa B - immunology NF-kappa B - metabolism NF-κB protein Ovarian Neoplasms - immunology Ovarian Neoplasms - metabolism Polyinosinic:polycytidylic acid Prostaglandin E2 Rats Ribonucleic acid RNA RNA Helicases - immunology RNA Helicases - metabolism RNA, Double-Stranded - immunology RNA, Double-Stranded - metabolism Signal transduction Signal Transduction - immunology Toll-like receptors Tumor Cells, Cultured Tumor Microenvironment - immunology Tumor Necrosis Factor-alpha - immunology Tumor Necrosis Factor-alpha - metabolism Tumors Viruses |
title | Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T17%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helicase-Driven%20Activation%20of%20NF%CE%BAB-COX2%20Pathway%20Mediates%20the%20Immunosuppressive%20Component%20of%20dsRNA-Driven%20Inflammation%20in%20the%20Human%20Tumor%20Microenvironment&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Theodoraki,%20Marie-Nicole&rft.date=2018-08-01&rft.volume=78&rft.issue=15&rft.spage=4292&rft.epage=4302&rft.pages=4292-4302&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-17-3985&rft_dat=%3Cproquest_pubme%3E2049560316%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080438519&rft_id=info:pmid/29853604&rfr_iscdi=true |