Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons
Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views supp...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2010-06, Vol.30 (25), p.8660-8670 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8670 |
---|---|
container_issue | 25 |
container_start_page | 8660 |
container_title | The Journal of neuroscience |
container_volume | 30 |
creator | Martini, Francisco J Valdeolmillos, Miguel |
description | Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views support a central role for pulling forces that drive nuclear movement. The participation of actomyosin driven forces acting at the nucleus rear has been suggested, however its precise contribution has not been directly addressed. By analyzing interneurons migrating in cortical slices of mouse brains, we have found that nucleokinesis is associated with a precise pattern of actin dynamics characterized by the initial formation of a cup-like actin structure at the rear nuclear pole. Time-lapse experiments show that progressive actomyosin contraction drives the nucleus forward. Nucleokinesis concludes with the complete contraction of the cup-like structure, resulting in an actin spot at the base of the retracting trailing process. Our results demonstrate that this actin remodeling requires a threshold calcium level provided by low-frequency spontaneous fast intracellular calcium transients. Microtubule stabilization with taxol treatment prevents actin remodeling and nucleokinesis, whereas cells with a collapsed microtubule cytoskeleton induced by nocodazole treatment, display nearly normal actin dynamics and nucleokinesis. In summary, the results presented here demonstrate that actomyosin forces acting at the rear side of the nucleus drives nucleokinesis in tangentially migrating interneurons in a process that requires calcium and a dynamic cytoskeleton of microtubules. |
doi_str_mv | 10.1523/JNEUROSCI.1962-10.2010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6634617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754533732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-4a6b48e546f55a3de18888d098af8a66f5e1badc75fd5fb628e767a1ed521d883</originalsourceid><addsrcrecordid>eNqFUclO7DAQtNBDMCy_gHLjFPDuzAUJjXgsQiCxnC2P0xmMEptnO0j8_XNYRnCiL62uriq5XQgdEHxEBGXHVzdnj3e394vLIzKXtC4wxQRvoFnZzmvKMfmDZpgqXEuu-DbaSekZY6wwUVtom2Kh2JyQGVqd2hyGt5Ccr2zwORqbXfCVyVV-gspC31cRTKza6F4hVX60_TQWok99sOadXcSDW8Uy-FWxidlZ0xc0Q_QwxuDTHtrsTJ9g_7Pvose_Zw-Li_r69vxycXpdWyF5rrmRS96A4LITwrAWSFOqxfPGdI2RBQWyNK1VomtFt5S0ASWVIdAKStqmYbvo5MP3ZVwO0FqYTur1S3SDiW86GKd_brx70qvwqqVkXBJVDA4_DWL4N0LKenBp-gbjIYxJK8EFY4rR35mMMSwaJgtTfjBtDClF6NbvIVhPcep1nHqKc4KnOIvw4Ps1a9lXfuw_RaagXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733305836</pqid></control><display><type>article</type><title>Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Martini, Francisco J ; Valdeolmillos, Miguel</creator><creatorcontrib>Martini, Francisco J ; Valdeolmillos, Miguel</creatorcontrib><description>Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views support a central role for pulling forces that drive nuclear movement. The participation of actomyosin driven forces acting at the nucleus rear has been suggested, however its precise contribution has not been directly addressed. By analyzing interneurons migrating in cortical slices of mouse brains, we have found that nucleokinesis is associated with a precise pattern of actin dynamics characterized by the initial formation of a cup-like actin structure at the rear nuclear pole. Time-lapse experiments show that progressive actomyosin contraction drives the nucleus forward. Nucleokinesis concludes with the complete contraction of the cup-like structure, resulting in an actin spot at the base of the retracting trailing process. Our results demonstrate that this actin remodeling requires a threshold calcium level provided by low-frequency spontaneous fast intracellular calcium transients. Microtubule stabilization with taxol treatment prevents actin remodeling and nucleokinesis, whereas cells with a collapsed microtubule cytoskeleton induced by nocodazole treatment, display nearly normal actin dynamics and nucleokinesis. In summary, the results presented here demonstrate that actomyosin forces acting at the rear side of the nucleus drives nucleokinesis in tangentially migrating interneurons in a process that requires calcium and a dynamic cytoskeleton of microtubules.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1962-10.2010</identifier><identifier>PMID: 20573911</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Actomyosin - physiology ; Analysis of Variance ; Animals ; Calcium Signaling - physiology ; Cell Movement - physiology ; Cell Nucleus - physiology ; Cell Polarity - physiology ; Cells, Cultured ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Cytoskeleton - physiology ; Female ; Fluorescent Antibody Technique ; Image Processing, Computer-Assisted ; Interneurons - cytology ; Interneurons - physiology ; Mice ; Microscopy, Video</subject><ispartof>The Journal of neuroscience, 2010-06, Vol.30 (25), p.8660-8670</ispartof><rights>Copyright © 2010 the authors 0270-6474/10/308660-11$15.00/0 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-4a6b48e546f55a3de18888d098af8a66f5e1badc75fd5fb628e767a1ed521d883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634617/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634617/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20573911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martini, Francisco J</creatorcontrib><creatorcontrib>Valdeolmillos, Miguel</creatorcontrib><title>Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views support a central role for pulling forces that drive nuclear movement. The participation of actomyosin driven forces acting at the nucleus rear has been suggested, however its precise contribution has not been directly addressed. By analyzing interneurons migrating in cortical slices of mouse brains, we have found that nucleokinesis is associated with a precise pattern of actin dynamics characterized by the initial formation of a cup-like actin structure at the rear nuclear pole. Time-lapse experiments show that progressive actomyosin contraction drives the nucleus forward. Nucleokinesis concludes with the complete contraction of the cup-like structure, resulting in an actin spot at the base of the retracting trailing process. Our results demonstrate that this actin remodeling requires a threshold calcium level provided by low-frequency spontaneous fast intracellular calcium transients. Microtubule stabilization with taxol treatment prevents actin remodeling and nucleokinesis, whereas cells with a collapsed microtubule cytoskeleton induced by nocodazole treatment, display nearly normal actin dynamics and nucleokinesis. In summary, the results presented here demonstrate that actomyosin forces acting at the rear side of the nucleus drives nucleokinesis in tangentially migrating interneurons in a process that requires calcium and a dynamic cytoskeleton of microtubules.</description><subject>Actomyosin - physiology</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Calcium Signaling - physiology</subject><subject>Cell Movement - physiology</subject><subject>Cell Nucleus - physiology</subject><subject>Cell Polarity - physiology</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Cytoskeleton - physiology</subject><subject>Female</subject><subject>Fluorescent Antibody Technique</subject><subject>Image Processing, Computer-Assisted</subject><subject>Interneurons - cytology</subject><subject>Interneurons - physiology</subject><subject>Mice</subject><subject>Microscopy, Video</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUclO7DAQtNBDMCy_gHLjFPDuzAUJjXgsQiCxnC2P0xmMEptnO0j8_XNYRnCiL62uriq5XQgdEHxEBGXHVzdnj3e394vLIzKXtC4wxQRvoFnZzmvKMfmDZpgqXEuu-DbaSekZY6wwUVtom2Kh2JyQGVqd2hyGt5Ccr2zwORqbXfCVyVV-gspC31cRTKza6F4hVX60_TQWok99sOadXcSDW8Uy-FWxidlZ0xc0Q_QwxuDTHtrsTJ9g_7Pvose_Zw-Li_r69vxycXpdWyF5rrmRS96A4LITwrAWSFOqxfPGdI2RBQWyNK1VomtFt5S0ASWVIdAKStqmYbvo5MP3ZVwO0FqYTur1S3SDiW86GKd_brx70qvwqqVkXBJVDA4_DWL4N0LKenBp-gbjIYxJK8EFY4rR35mMMSwaJgtTfjBtDClF6NbvIVhPcep1nHqKc4KnOIvw4Ps1a9lXfuw_RaagXw</recordid><startdate>20100623</startdate><enddate>20100623</enddate><creator>Martini, Francisco J</creator><creator>Valdeolmillos, Miguel</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20100623</creationdate><title>Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons</title><author>Martini, Francisco J ; Valdeolmillos, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-4a6b48e546f55a3de18888d098af8a66f5e1badc75fd5fb628e767a1ed521d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actomyosin - physiology</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Calcium Signaling - physiology</topic><topic>Cell Movement - physiology</topic><topic>Cell Nucleus - physiology</topic><topic>Cell Polarity - physiology</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Cytoskeleton - physiology</topic><topic>Female</topic><topic>Fluorescent Antibody Technique</topic><topic>Image Processing, Computer-Assisted</topic><topic>Interneurons - cytology</topic><topic>Interneurons - physiology</topic><topic>Mice</topic><topic>Microscopy, Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martini, Francisco J</creatorcontrib><creatorcontrib>Valdeolmillos, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martini, Francisco J</au><au>Valdeolmillos, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2010-06-23</date><risdate>2010</risdate><volume>30</volume><issue>25</issue><spage>8660</spage><epage>8670</epage><pages>8660-8670</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views support a central role for pulling forces that drive nuclear movement. The participation of actomyosin driven forces acting at the nucleus rear has been suggested, however its precise contribution has not been directly addressed. By analyzing interneurons migrating in cortical slices of mouse brains, we have found that nucleokinesis is associated with a precise pattern of actin dynamics characterized by the initial formation of a cup-like actin structure at the rear nuclear pole. Time-lapse experiments show that progressive actomyosin contraction drives the nucleus forward. Nucleokinesis concludes with the complete contraction of the cup-like structure, resulting in an actin spot at the base of the retracting trailing process. Our results demonstrate that this actin remodeling requires a threshold calcium level provided by low-frequency spontaneous fast intracellular calcium transients. Microtubule stabilization with taxol treatment prevents actin remodeling and nucleokinesis, whereas cells with a collapsed microtubule cytoskeleton induced by nocodazole treatment, display nearly normal actin dynamics and nucleokinesis. In summary, the results presented here demonstrate that actomyosin forces acting at the rear side of the nucleus drives nucleokinesis in tangentially migrating interneurons in a process that requires calcium and a dynamic cytoskeleton of microtubules.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>20573911</pmid><doi>10.1523/JNEUROSCI.1962-10.2010</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2010-06, Vol.30 (25), p.8660-8670 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6634617 |
source | MEDLINE; PubMed Central; EZB Electronic Journals Library |
subjects | Actomyosin - physiology Analysis of Variance Animals Calcium Signaling - physiology Cell Movement - physiology Cell Nucleus - physiology Cell Polarity - physiology Cells, Cultured Cerebral Cortex - cytology Cerebral Cortex - physiology Cytoskeleton - physiology Female Fluorescent Antibody Technique Image Processing, Computer-Assisted Interneurons - cytology Interneurons - physiology Mice Microscopy, Video |
title | Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actomyosin%20contraction%20at%20the%20cell%20rear%20drives%20nuclear%20translocation%20in%20migrating%20cortical%20interneurons&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Martini,%20Francisco%20J&rft.date=2010-06-23&rft.volume=30&rft.issue=25&rft.spage=8660&rft.epage=8670&rft.pages=8660-8670&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1962-10.2010&rft_dat=%3Cproquest_pubme%3E754533732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733305836&rft_id=info:pmid/20573911&rfr_iscdi=true |