Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons

Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views supp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2010-06, Vol.30 (25), p.8660-8670
Hauptverfasser: Martini, Francisco J, Valdeolmillos, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8670
container_issue 25
container_start_page 8660
container_title The Journal of neuroscience
container_volume 30
creator Martini, Francisco J
Valdeolmillos, Miguel
description Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views support a central role for pulling forces that drive nuclear movement. The participation of actomyosin driven forces acting at the nucleus rear has been suggested, however its precise contribution has not been directly addressed. By analyzing interneurons migrating in cortical slices of mouse brains, we have found that nucleokinesis is associated with a precise pattern of actin dynamics characterized by the initial formation of a cup-like actin structure at the rear nuclear pole. Time-lapse experiments show that progressive actomyosin contraction drives the nucleus forward. Nucleokinesis concludes with the complete contraction of the cup-like structure, resulting in an actin spot at the base of the retracting trailing process. Our results demonstrate that this actin remodeling requires a threshold calcium level provided by low-frequency spontaneous fast intracellular calcium transients. Microtubule stabilization with taxol treatment prevents actin remodeling and nucleokinesis, whereas cells with a collapsed microtubule cytoskeleton induced by nocodazole treatment, display nearly normal actin dynamics and nucleokinesis. In summary, the results presented here demonstrate that actomyosin forces acting at the rear side of the nucleus drives nucleokinesis in tangentially migrating interneurons in a process that requires calcium and a dynamic cytoskeleton of microtubules.
doi_str_mv 10.1523/JNEUROSCI.1962-10.2010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6634617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754533732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-4a6b48e546f55a3de18888d098af8a66f5e1badc75fd5fb628e767a1ed521d883</originalsourceid><addsrcrecordid>eNqFUclO7DAQtNBDMCy_gHLjFPDuzAUJjXgsQiCxnC2P0xmMEptnO0j8_XNYRnCiL62uriq5XQgdEHxEBGXHVzdnj3e394vLIzKXtC4wxQRvoFnZzmvKMfmDZpgqXEuu-DbaSekZY6wwUVtom2Kh2JyQGVqd2hyGt5Ccr2zwORqbXfCVyVV-gspC31cRTKza6F4hVX60_TQWok99sOadXcSDW8Uy-FWxidlZ0xc0Q_QwxuDTHtrsTJ9g_7Pvose_Zw-Li_r69vxycXpdWyF5rrmRS96A4LITwrAWSFOqxfPGdI2RBQWyNK1VomtFt5S0ASWVIdAKStqmYbvo5MP3ZVwO0FqYTur1S3SDiW86GKd_brx70qvwqqVkXBJVDA4_DWL4N0LKenBp-gbjIYxJK8EFY4rR35mMMSwaJgtTfjBtDClF6NbvIVhPcep1nHqKc4KnOIvw4Ps1a9lXfuw_RaagXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733305836</pqid></control><display><type>article</type><title>Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Martini, Francisco J ; Valdeolmillos, Miguel</creator><creatorcontrib>Martini, Francisco J ; Valdeolmillos, Miguel</creatorcontrib><description>Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views support a central role for pulling forces that drive nuclear movement. The participation of actomyosin driven forces acting at the nucleus rear has been suggested, however its precise contribution has not been directly addressed. By analyzing interneurons migrating in cortical slices of mouse brains, we have found that nucleokinesis is associated with a precise pattern of actin dynamics characterized by the initial formation of a cup-like actin structure at the rear nuclear pole. Time-lapse experiments show that progressive actomyosin contraction drives the nucleus forward. Nucleokinesis concludes with the complete contraction of the cup-like structure, resulting in an actin spot at the base of the retracting trailing process. Our results demonstrate that this actin remodeling requires a threshold calcium level provided by low-frequency spontaneous fast intracellular calcium transients. Microtubule stabilization with taxol treatment prevents actin remodeling and nucleokinesis, whereas cells with a collapsed microtubule cytoskeleton induced by nocodazole treatment, display nearly normal actin dynamics and nucleokinesis. In summary, the results presented here demonstrate that actomyosin forces acting at the rear side of the nucleus drives nucleokinesis in tangentially migrating interneurons in a process that requires calcium and a dynamic cytoskeleton of microtubules.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1962-10.2010</identifier><identifier>PMID: 20573911</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Actomyosin - physiology ; Analysis of Variance ; Animals ; Calcium Signaling - physiology ; Cell Movement - physiology ; Cell Nucleus - physiology ; Cell Polarity - physiology ; Cells, Cultured ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Cytoskeleton - physiology ; Female ; Fluorescent Antibody Technique ; Image Processing, Computer-Assisted ; Interneurons - cytology ; Interneurons - physiology ; Mice ; Microscopy, Video</subject><ispartof>The Journal of neuroscience, 2010-06, Vol.30 (25), p.8660-8670</ispartof><rights>Copyright © 2010 the authors 0270-6474/10/308660-11$15.00/0 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-4a6b48e546f55a3de18888d098af8a66f5e1badc75fd5fb628e767a1ed521d883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634617/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634617/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20573911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martini, Francisco J</creatorcontrib><creatorcontrib>Valdeolmillos, Miguel</creatorcontrib><title>Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views support a central role for pulling forces that drive nuclear movement. The participation of actomyosin driven forces acting at the nucleus rear has been suggested, however its precise contribution has not been directly addressed. By analyzing interneurons migrating in cortical slices of mouse brains, we have found that nucleokinesis is associated with a precise pattern of actin dynamics characterized by the initial formation of a cup-like actin structure at the rear nuclear pole. Time-lapse experiments show that progressive actomyosin contraction drives the nucleus forward. Nucleokinesis concludes with the complete contraction of the cup-like structure, resulting in an actin spot at the base of the retracting trailing process. Our results demonstrate that this actin remodeling requires a threshold calcium level provided by low-frequency spontaneous fast intracellular calcium transients. Microtubule stabilization with taxol treatment prevents actin remodeling and nucleokinesis, whereas cells with a collapsed microtubule cytoskeleton induced by nocodazole treatment, display nearly normal actin dynamics and nucleokinesis. In summary, the results presented here demonstrate that actomyosin forces acting at the rear side of the nucleus drives nucleokinesis in tangentially migrating interneurons in a process that requires calcium and a dynamic cytoskeleton of microtubules.</description><subject>Actomyosin - physiology</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Calcium Signaling - physiology</subject><subject>Cell Movement - physiology</subject><subject>Cell Nucleus - physiology</subject><subject>Cell Polarity - physiology</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Cytoskeleton - physiology</subject><subject>Female</subject><subject>Fluorescent Antibody Technique</subject><subject>Image Processing, Computer-Assisted</subject><subject>Interneurons - cytology</subject><subject>Interneurons - physiology</subject><subject>Mice</subject><subject>Microscopy, Video</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUclO7DAQtNBDMCy_gHLjFPDuzAUJjXgsQiCxnC2P0xmMEptnO0j8_XNYRnCiL62uriq5XQgdEHxEBGXHVzdnj3e394vLIzKXtC4wxQRvoFnZzmvKMfmDZpgqXEuu-DbaSekZY6wwUVtom2Kh2JyQGVqd2hyGt5Ccr2zwORqbXfCVyVV-gspC31cRTKza6F4hVX60_TQWok99sOadXcSDW8Uy-FWxidlZ0xc0Q_QwxuDTHtrsTJ9g_7Pvose_Zw-Li_r69vxycXpdWyF5rrmRS96A4LITwrAWSFOqxfPGdI2RBQWyNK1VomtFt5S0ASWVIdAKStqmYbvo5MP3ZVwO0FqYTur1S3SDiW86GKd_brx70qvwqqVkXBJVDA4_DWL4N0LKenBp-gbjIYxJK8EFY4rR35mMMSwaJgtTfjBtDClF6NbvIVhPcep1nHqKc4KnOIvw4Ps1a9lXfuw_RaagXw</recordid><startdate>20100623</startdate><enddate>20100623</enddate><creator>Martini, Francisco J</creator><creator>Valdeolmillos, Miguel</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20100623</creationdate><title>Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons</title><author>Martini, Francisco J ; Valdeolmillos, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-4a6b48e546f55a3de18888d098af8a66f5e1badc75fd5fb628e767a1ed521d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actomyosin - physiology</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Calcium Signaling - physiology</topic><topic>Cell Movement - physiology</topic><topic>Cell Nucleus - physiology</topic><topic>Cell Polarity - physiology</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Cytoskeleton - physiology</topic><topic>Female</topic><topic>Fluorescent Antibody Technique</topic><topic>Image Processing, Computer-Assisted</topic><topic>Interneurons - cytology</topic><topic>Interneurons - physiology</topic><topic>Mice</topic><topic>Microscopy, Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martini, Francisco J</creatorcontrib><creatorcontrib>Valdeolmillos, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martini, Francisco J</au><au>Valdeolmillos, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2010-06-23</date><risdate>2010</risdate><volume>30</volume><issue>25</issue><spage>8660</spage><epage>8670</epage><pages>8660-8670</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views support a central role for pulling forces that drive nuclear movement. The participation of actomyosin driven forces acting at the nucleus rear has been suggested, however its precise contribution has not been directly addressed. By analyzing interneurons migrating in cortical slices of mouse brains, we have found that nucleokinesis is associated with a precise pattern of actin dynamics characterized by the initial formation of a cup-like actin structure at the rear nuclear pole. Time-lapse experiments show that progressive actomyosin contraction drives the nucleus forward. Nucleokinesis concludes with the complete contraction of the cup-like structure, resulting in an actin spot at the base of the retracting trailing process. Our results demonstrate that this actin remodeling requires a threshold calcium level provided by low-frequency spontaneous fast intracellular calcium transients. Microtubule stabilization with taxol treatment prevents actin remodeling and nucleokinesis, whereas cells with a collapsed microtubule cytoskeleton induced by nocodazole treatment, display nearly normal actin dynamics and nucleokinesis. In summary, the results presented here demonstrate that actomyosin forces acting at the rear side of the nucleus drives nucleokinesis in tangentially migrating interneurons in a process that requires calcium and a dynamic cytoskeleton of microtubules.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>20573911</pmid><doi>10.1523/JNEUROSCI.1962-10.2010</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2010-06, Vol.30 (25), p.8660-8670
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6634617
source MEDLINE; PubMed Central; EZB Electronic Journals Library
subjects Actomyosin - physiology
Analysis of Variance
Animals
Calcium Signaling - physiology
Cell Movement - physiology
Cell Nucleus - physiology
Cell Polarity - physiology
Cells, Cultured
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Cytoskeleton - physiology
Female
Fluorescent Antibody Technique
Image Processing, Computer-Assisted
Interneurons - cytology
Interneurons - physiology
Mice
Microscopy, Video
title Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actomyosin%20contraction%20at%20the%20cell%20rear%20drives%20nuclear%20translocation%20in%20migrating%20cortical%20interneurons&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Martini,%20Francisco%20J&rft.date=2010-06-23&rft.volume=30&rft.issue=25&rft.spage=8660&rft.epage=8670&rft.pages=8660-8670&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1962-10.2010&rft_dat=%3Cproquest_pubme%3E754533732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733305836&rft_id=info:pmid/20573911&rfr_iscdi=true