Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals

It is generally thought that the signal-to-noise ratio, the bandwidth, and the information content of neural data acquired via noninvasive scalp electroencephalography (EEG) are insufficient to extract detailed information about natural, multijoint movements of the upper limb. Here, we challenge thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2010-03, Vol.30 (9), p.3432-3437
Hauptverfasser: Bradberry, Trent J, Gentili, Rodolphe J, Contreras-Vidal, Jose L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3437
container_issue 9
container_start_page 3432
container_title The Journal of neuroscience
container_volume 30
creator Bradberry, Trent J
Gentili, Rodolphe J
Contreras-Vidal, Jose L
description It is generally thought that the signal-to-noise ratio, the bandwidth, and the information content of neural data acquired via noninvasive scalp electroencephalography (EEG) are insufficient to extract detailed information about natural, multijoint movements of the upper limb. Here, we challenge this assumption by continuously decoding three-dimensional (3D) hand velocity from neural data acquired from the scalp with 55-channel EEG during a 3D center-out reaching task. To preserve ecological validity, five subjects self-initiated reaches and self-selected targets. Eye movements were controlled so they would not confound the interpretation of the results. With only 34 sensors, the correlation between measured and reconstructed velocity profiles compared reasonably well to that reported by studies that decoded hand kinematics from neural activity acquired intracranially. We subsequently examined the individual contributions of EEG sensors to decoding to find substantial involvement of scalp areas over the sensorimotor cortex contralateral to the reaching hand. Using standardized low-resolution brain electromagnetic tomography (sLORETA), we identified distributed current density sources related to hand velocity in the contralateral precentral gyrus, postcentral gyrus, and inferior parietal lobule. Furthermore, we discovered that movement variability negatively correlated with decoding accuracy, a finding to consider during the development of brain-computer interface systems. Overall, the ability to continuously decode 3D hand velocity from EEG during natural, center-out reaching holds promise for the furtherance of noninvasive neuromotor prostheses for movement-impaired individuals.
doi_str_mv 10.1523/JNEUROSCI.6107-09.2010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6634107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733675787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-8ff650f7459c30da8245f590a35c858447ae3fbe4b608bdec63bcbb225ac66d23</originalsourceid><addsrcrecordid>eNpVkVtv1DAQhS0EokvhL1R5gqcs43vygoSWhRaVVurl2TiOkxgl9tbO7op_j1dbVvDikTzfOTOag9AFhiXmhH78frN-vLu9X10tBQZZQr0kgOEFWuRuXRIG-CVaAJFQCibZGXqT0i8AkIDla3RGgADNzwL9vLMm-DTHrZmd74uHIVpbfnGT9ckFr8fiUvu2-BF2Nn_NqehimIqb4J3f6eR2tliP1swxWG_sZtBj6KPeDM4U967P8vQWvepyse-e6zl6_Lp-WF2W17ffrlafr0vDMcxl1XWCQycZrw2FVleE8Y7XoCk3Fa8Yk9rSrrGsEVA1rTWCNqZpCOHaCNESeo4-HX0322ayrcnLRj2qTXSTjr9V0E793_FuUH3YKSEoyyfMBh-eDWJ42to0q8klY8dRexu2SUlKheSyOpDiSJoYUoq2O03BoA7pqFM66pCOglod0snCi393PMn-xpGB90dgcP2wd9GqNOlxzDhW-_2egqoVZZTQP8zRnQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733675787</pqid></control><display><type>article</type><title>Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bradberry, Trent J ; Gentili, Rodolphe J ; Contreras-Vidal, Jose L</creator><creatorcontrib>Bradberry, Trent J ; Gentili, Rodolphe J ; Contreras-Vidal, Jose L</creatorcontrib><description>It is generally thought that the signal-to-noise ratio, the bandwidth, and the information content of neural data acquired via noninvasive scalp electroencephalography (EEG) are insufficient to extract detailed information about natural, multijoint movements of the upper limb. Here, we challenge this assumption by continuously decoding three-dimensional (3D) hand velocity from neural data acquired from the scalp with 55-channel EEG during a 3D center-out reaching task. To preserve ecological validity, five subjects self-initiated reaches and self-selected targets. Eye movements were controlled so they would not confound the interpretation of the results. With only 34 sensors, the correlation between measured and reconstructed velocity profiles compared reasonably well to that reported by studies that decoded hand kinematics from neural activity acquired intracranially. We subsequently examined the individual contributions of EEG sensors to decoding to find substantial involvement of scalp areas over the sensorimotor cortex contralateral to the reaching hand. Using standardized low-resolution brain electromagnetic tomography (sLORETA), we identified distributed current density sources related to hand velocity in the contralateral precentral gyrus, postcentral gyrus, and inferior parietal lobule. Furthermore, we discovered that movement variability negatively correlated with decoding accuracy, a finding to consider during the development of brain-computer interface systems. Overall, the ability to continuously decode 3D hand velocity from EEG during natural, center-out reaching holds promise for the furtherance of noninvasive neuromotor prostheses for movement-impaired individuals.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.6107-09.2010</identifier><identifier>PMID: 20203202</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Biomechanical Phenomena - physiology ; Brain Mapping ; Brief Communications ; Cerebral Cortex - anatomy &amp; histology ; Cerebral Cortex - physiology ; Cues ; Electroencephalography ; Evoked Potentials, Motor - physiology ; Hand - innervation ; Hand - physiology ; Humans ; Magnetoencephalography ; Movement - physiology ; Neuropsychological Tests ; Photic Stimulation ; Prostheses and Implants ; Psychomotor Performance - physiology ; Signal Processing, Computer-Assisted ; User-Computer Interface</subject><ispartof>The Journal of neuroscience, 2010-03, Vol.30 (9), p.3432-3437</ispartof><rights>Copyright © 2010 the authors 0270-6474/10/303432-06$15.00/0 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-8ff650f7459c30da8245f590a35c858447ae3fbe4b608bdec63bcbb225ac66d23</citedby><cites>FETCH-LOGICAL-c510t-8ff650f7459c30da8245f590a35c858447ae3fbe4b608bdec63bcbb225ac66d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634107/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634107/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20203202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bradberry, Trent J</creatorcontrib><creatorcontrib>Gentili, Rodolphe J</creatorcontrib><creatorcontrib>Contreras-Vidal, Jose L</creatorcontrib><title>Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>It is generally thought that the signal-to-noise ratio, the bandwidth, and the information content of neural data acquired via noninvasive scalp electroencephalography (EEG) are insufficient to extract detailed information about natural, multijoint movements of the upper limb. Here, we challenge this assumption by continuously decoding three-dimensional (3D) hand velocity from neural data acquired from the scalp with 55-channel EEG during a 3D center-out reaching task. To preserve ecological validity, five subjects self-initiated reaches and self-selected targets. Eye movements were controlled so they would not confound the interpretation of the results. With only 34 sensors, the correlation between measured and reconstructed velocity profiles compared reasonably well to that reported by studies that decoded hand kinematics from neural activity acquired intracranially. We subsequently examined the individual contributions of EEG sensors to decoding to find substantial involvement of scalp areas over the sensorimotor cortex contralateral to the reaching hand. Using standardized low-resolution brain electromagnetic tomography (sLORETA), we identified distributed current density sources related to hand velocity in the contralateral precentral gyrus, postcentral gyrus, and inferior parietal lobule. Furthermore, we discovered that movement variability negatively correlated with decoding accuracy, a finding to consider during the development of brain-computer interface systems. Overall, the ability to continuously decode 3D hand velocity from EEG during natural, center-out reaching holds promise for the furtherance of noninvasive neuromotor prostheses for movement-impaired individuals.</description><subject>Biomechanical Phenomena - physiology</subject><subject>Brain Mapping</subject><subject>Brief Communications</subject><subject>Cerebral Cortex - anatomy &amp; histology</subject><subject>Cerebral Cortex - physiology</subject><subject>Cues</subject><subject>Electroencephalography</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Hand - innervation</subject><subject>Hand - physiology</subject><subject>Humans</subject><subject>Magnetoencephalography</subject><subject>Movement - physiology</subject><subject>Neuropsychological Tests</subject><subject>Photic Stimulation</subject><subject>Prostheses and Implants</subject><subject>Psychomotor Performance - physiology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>User-Computer Interface</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtv1DAQhS0EokvhL1R5gqcs43vygoSWhRaVVurl2TiOkxgl9tbO7op_j1dbVvDikTzfOTOag9AFhiXmhH78frN-vLu9X10tBQZZQr0kgOEFWuRuXRIG-CVaAJFQCibZGXqT0i8AkIDla3RGgADNzwL9vLMm-DTHrZmd74uHIVpbfnGT9ckFr8fiUvu2-BF2Nn_NqehimIqb4J3f6eR2tliP1swxWG_sZtBj6KPeDM4U967P8vQWvepyse-e6zl6_Lp-WF2W17ffrlafr0vDMcxl1XWCQycZrw2FVleE8Y7XoCk3Fa8Yk9rSrrGsEVA1rTWCNqZpCOHaCNESeo4-HX0322ayrcnLRj2qTXSTjr9V0E793_FuUH3YKSEoyyfMBh-eDWJ42to0q8klY8dRexu2SUlKheSyOpDiSJoYUoq2O03BoA7pqFM66pCOglod0snCi393PMn-xpGB90dgcP2wd9GqNOlxzDhW-_2egqoVZZTQP8zRnQQ</recordid><startdate>20100303</startdate><enddate>20100303</enddate><creator>Bradberry, Trent J</creator><creator>Gentili, Rodolphe J</creator><creator>Contreras-Vidal, Jose L</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100303</creationdate><title>Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals</title><author>Bradberry, Trent J ; Gentili, Rodolphe J ; Contreras-Vidal, Jose L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-8ff650f7459c30da8245f590a35c858447ae3fbe4b608bdec63bcbb225ac66d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biomechanical Phenomena - physiology</topic><topic>Brain Mapping</topic><topic>Brief Communications</topic><topic>Cerebral Cortex - anatomy &amp; histology</topic><topic>Cerebral Cortex - physiology</topic><topic>Cues</topic><topic>Electroencephalography</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Hand - innervation</topic><topic>Hand - physiology</topic><topic>Humans</topic><topic>Magnetoencephalography</topic><topic>Movement - physiology</topic><topic>Neuropsychological Tests</topic><topic>Photic Stimulation</topic><topic>Prostheses and Implants</topic><topic>Psychomotor Performance - physiology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradberry, Trent J</creatorcontrib><creatorcontrib>Gentili, Rodolphe J</creatorcontrib><creatorcontrib>Contreras-Vidal, Jose L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradberry, Trent J</au><au>Gentili, Rodolphe J</au><au>Contreras-Vidal, Jose L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2010-03-03</date><risdate>2010</risdate><volume>30</volume><issue>9</issue><spage>3432</spage><epage>3437</epage><pages>3432-3437</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>It is generally thought that the signal-to-noise ratio, the bandwidth, and the information content of neural data acquired via noninvasive scalp electroencephalography (EEG) are insufficient to extract detailed information about natural, multijoint movements of the upper limb. Here, we challenge this assumption by continuously decoding three-dimensional (3D) hand velocity from neural data acquired from the scalp with 55-channel EEG during a 3D center-out reaching task. To preserve ecological validity, five subjects self-initiated reaches and self-selected targets. Eye movements were controlled so they would not confound the interpretation of the results. With only 34 sensors, the correlation between measured and reconstructed velocity profiles compared reasonably well to that reported by studies that decoded hand kinematics from neural activity acquired intracranially. We subsequently examined the individual contributions of EEG sensors to decoding to find substantial involvement of scalp areas over the sensorimotor cortex contralateral to the reaching hand. Using standardized low-resolution brain electromagnetic tomography (sLORETA), we identified distributed current density sources related to hand velocity in the contralateral precentral gyrus, postcentral gyrus, and inferior parietal lobule. Furthermore, we discovered that movement variability negatively correlated with decoding accuracy, a finding to consider during the development of brain-computer interface systems. Overall, the ability to continuously decode 3D hand velocity from EEG during natural, center-out reaching holds promise for the furtherance of noninvasive neuromotor prostheses for movement-impaired individuals.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>20203202</pmid><doi>10.1523/JNEUROSCI.6107-09.2010</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2010-03, Vol.30 (9), p.3432-3437
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6634107
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biomechanical Phenomena - physiology
Brain Mapping
Brief Communications
Cerebral Cortex - anatomy & histology
Cerebral Cortex - physiology
Cues
Electroencephalography
Evoked Potentials, Motor - physiology
Hand - innervation
Hand - physiology
Humans
Magnetoencephalography
Movement - physiology
Neuropsychological Tests
Photic Stimulation
Prostheses and Implants
Psychomotor Performance - physiology
Signal Processing, Computer-Assisted
User-Computer Interface
title Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstructing%20Three-Dimensional%20Hand%20Movements%20from%20Noninvasive%20Electroencephalographic%20Signals&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Bradberry,%20Trent%20J&rft.date=2010-03-03&rft.volume=30&rft.issue=9&rft.spage=3432&rft.epage=3437&rft.pages=3432-3437&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.6107-09.2010&rft_dat=%3Cproquest_pubme%3E733675787%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733675787&rft_id=info:pmid/20203202&rfr_iscdi=true