A specific class of interneuron mediates inhibitory plasticity in the lateral amygdala
The lateral amygdala (LA) plays a key role in emotional learning and is the main site for sensory input into the amygdala. Within the LA, pyramidal neurons comprise the major cell population with plasticity of inputs to these neurons thought to underlie fear learning. Pyramidal neuron activity is ti...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2010-11, Vol.30 (44), p.14619-14629 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14629 |
---|---|
container_issue | 44 |
container_start_page | 14619 |
container_title | The Journal of neuroscience |
container_volume | 30 |
creator | Polepalli, Jai S Sullivan, Robert K P Yanagawa, Yuchio Sah, Pankaj |
description | The lateral amygdala (LA) plays a key role in emotional learning and is the main site for sensory input into the amygdala. Within the LA, pyramidal neurons comprise the major cell population with plasticity of inputs to these neurons thought to underlie fear learning. Pyramidal neuron activity is tightly controlled by local interneurons, and GABAergic modulation strongly influences amygdala-dependent learning. Synaptic inputs to some interneurons in the LA can also undergo synaptic plasticity, but the identity of these cells and the mechanisms that underlie this plasticity are not known. Here we show that long-term potentiation (LTP) in LA interneurons is restricted to a specific type of interneuron that is defined by the lack of expression of synaptic NR2B subunits. We find that LTP is only present at cortical inputs to these cells and is initiated by calcium influx via calcium-permeable AMPA receptors. LTP is maintained by trafficking of GluR2-lacking AMPA receptors that require an interaction with SAP97 and the actin cytoskeleton. Our results define a novel population of interneurons in the LA that control principal neuron excitability by feed-forward inhibition of cortical origin. This selective enhanced inhibition may contribute to reducing the activity of principal neurons engaged during extinction of conditioned fear. |
doi_str_mv | 10.1523/JNEUROSCI.3252-10.2010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6633620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762471550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-71253eb11efea1a9e741549ef3ab554c986878376727e67665009e403bbb4e9c3</originalsourceid><addsrcrecordid>eNqFkV9LHDEUxUNpqav2K0je-jSam7-Tl4Isai1SodW-hky846bMzmyTrLDfvhm0S33y6cK55x7O5UfICbBTUFycfft-cf_j9ufy-lRwxZsqcwbsHVnUrW24ZPCeLBg3rNHSyANymPNvxphhYD6SAw5MtgB2QX6d07zBEPsYaBh8znTqaRwLphG3aRrpGh-iL5iruIpdLFPa0U01lhhi2VWVlhXSoVqSH6hf7x4f_OCPyYfeDxk_vcwjcn95cbf82tzcXl0vz2-aoABKY4ArgR0A9ujBWzQSlLTYC98pJYNtdWtaYbThBrXRWjFmUTLRdZ1EG8QR-fKcu9l2tWnAsdQabpPi2qedm3x0rzdjXLnH6clpLYTmrAZ8fglI058t5uLWMQccBj_itM3OKqlayzm86TSaSwNKzZn62RnSlHPCft8HmJvpuT09N9Ob5ZlePTz5_5v92T9c4i_GQZfq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762471550</pqid></control><display><type>article</type><title>A specific class of interneuron mediates inhibitory plasticity in the lateral amygdala</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Polepalli, Jai S ; Sullivan, Robert K P ; Yanagawa, Yuchio ; Sah, Pankaj</creator><creatorcontrib>Polepalli, Jai S ; Sullivan, Robert K P ; Yanagawa, Yuchio ; Sah, Pankaj</creatorcontrib><description>The lateral amygdala (LA) plays a key role in emotional learning and is the main site for sensory input into the amygdala. Within the LA, pyramidal neurons comprise the major cell population with plasticity of inputs to these neurons thought to underlie fear learning. Pyramidal neuron activity is tightly controlled by local interneurons, and GABAergic modulation strongly influences amygdala-dependent learning. Synaptic inputs to some interneurons in the LA can also undergo synaptic plasticity, but the identity of these cells and the mechanisms that underlie this plasticity are not known. Here we show that long-term potentiation (LTP) in LA interneurons is restricted to a specific type of interneuron that is defined by the lack of expression of synaptic NR2B subunits. We find that LTP is only present at cortical inputs to these cells and is initiated by calcium influx via calcium-permeable AMPA receptors. LTP is maintained by trafficking of GluR2-lacking AMPA receptors that require an interaction with SAP97 and the actin cytoskeleton. Our results define a novel population of interneurons in the LA that control principal neuron excitability by feed-forward inhibition of cortical origin. This selective enhanced inhibition may contribute to reducing the activity of principal neurons engaged during extinction of conditioned fear.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3252-10.2010</identifier><identifier>PMID: 21048119</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Afferent Pathways - physiology ; Amygdala - cytology ; Amygdala - physiology ; Animals ; Cerebral Cortex - physiology ; Gene Knock-In Techniques ; Interneurons - classification ; Interneurons - cytology ; Interneurons - physiology ; Long-Term Potentiation - physiology ; Mice ; Mice, Transgenic ; Neural Inhibition - physiology ; Neuronal Plasticity - physiology ; Organ Culture Techniques ; Protein Subunits - physiology ; Receptors, AMPA - physiology</subject><ispartof>The Journal of neuroscience, 2010-11, Vol.30 (44), p.14619-14629</ispartof><rights>Copyright © 2010 the authors 0270-6474/10/3014619-11$15.00/0 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-71253eb11efea1a9e741549ef3ab554c986878376727e67665009e403bbb4e9c3</citedby><cites>FETCH-LOGICAL-c511t-71253eb11efea1a9e741549ef3ab554c986878376727e67665009e403bbb4e9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633620/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633620/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21048119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polepalli, Jai S</creatorcontrib><creatorcontrib>Sullivan, Robert K P</creatorcontrib><creatorcontrib>Yanagawa, Yuchio</creatorcontrib><creatorcontrib>Sah, Pankaj</creatorcontrib><title>A specific class of interneuron mediates inhibitory plasticity in the lateral amygdala</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The lateral amygdala (LA) plays a key role in emotional learning and is the main site for sensory input into the amygdala. Within the LA, pyramidal neurons comprise the major cell population with plasticity of inputs to these neurons thought to underlie fear learning. Pyramidal neuron activity is tightly controlled by local interneurons, and GABAergic modulation strongly influences amygdala-dependent learning. Synaptic inputs to some interneurons in the LA can also undergo synaptic plasticity, but the identity of these cells and the mechanisms that underlie this plasticity are not known. Here we show that long-term potentiation (LTP) in LA interneurons is restricted to a specific type of interneuron that is defined by the lack of expression of synaptic NR2B subunits. We find that LTP is only present at cortical inputs to these cells and is initiated by calcium influx via calcium-permeable AMPA receptors. LTP is maintained by trafficking of GluR2-lacking AMPA receptors that require an interaction with SAP97 and the actin cytoskeleton. Our results define a novel population of interneurons in the LA that control principal neuron excitability by feed-forward inhibition of cortical origin. This selective enhanced inhibition may contribute to reducing the activity of principal neurons engaged during extinction of conditioned fear.</description><subject>Afferent Pathways - physiology</subject><subject>Amygdala - cytology</subject><subject>Amygdala - physiology</subject><subject>Animals</subject><subject>Cerebral Cortex - physiology</subject><subject>Gene Knock-In Techniques</subject><subject>Interneurons - classification</subject><subject>Interneurons - cytology</subject><subject>Interneurons - physiology</subject><subject>Long-Term Potentiation - physiology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neural Inhibition - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Organ Culture Techniques</subject><subject>Protein Subunits - physiology</subject><subject>Receptors, AMPA - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV9LHDEUxUNpqav2K0je-jSam7-Tl4Isai1SodW-hky846bMzmyTrLDfvhm0S33y6cK55x7O5UfICbBTUFycfft-cf_j9ufy-lRwxZsqcwbsHVnUrW24ZPCeLBg3rNHSyANymPNvxphhYD6SAw5MtgB2QX6d07zBEPsYaBh8znTqaRwLphG3aRrpGh-iL5iruIpdLFPa0U01lhhi2VWVlhXSoVqSH6hf7x4f_OCPyYfeDxk_vcwjcn95cbf82tzcXl0vz2-aoABKY4ArgR0A9ujBWzQSlLTYC98pJYNtdWtaYbThBrXRWjFmUTLRdZ1EG8QR-fKcu9l2tWnAsdQabpPi2qedm3x0rzdjXLnH6clpLYTmrAZ8fglI058t5uLWMQccBj_itM3OKqlayzm86TSaSwNKzZn62RnSlHPCft8HmJvpuT09N9Ob5ZlePTz5_5v92T9c4i_GQZfq</recordid><startdate>20101103</startdate><enddate>20101103</enddate><creator>Polepalli, Jai S</creator><creator>Sullivan, Robert K P</creator><creator>Yanagawa, Yuchio</creator><creator>Sah, Pankaj</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20101103</creationdate><title>A specific class of interneuron mediates inhibitory plasticity in the lateral amygdala</title><author>Polepalli, Jai S ; Sullivan, Robert K P ; Yanagawa, Yuchio ; Sah, Pankaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-71253eb11efea1a9e741549ef3ab554c986878376727e67665009e403bbb4e9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Afferent Pathways - physiology</topic><topic>Amygdala - cytology</topic><topic>Amygdala - physiology</topic><topic>Animals</topic><topic>Cerebral Cortex - physiology</topic><topic>Gene Knock-In Techniques</topic><topic>Interneurons - classification</topic><topic>Interneurons - cytology</topic><topic>Interneurons - physiology</topic><topic>Long-Term Potentiation - physiology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neural Inhibition - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Organ Culture Techniques</topic><topic>Protein Subunits - physiology</topic><topic>Receptors, AMPA - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polepalli, Jai S</creatorcontrib><creatorcontrib>Sullivan, Robert K P</creatorcontrib><creatorcontrib>Yanagawa, Yuchio</creatorcontrib><creatorcontrib>Sah, Pankaj</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polepalli, Jai S</au><au>Sullivan, Robert K P</au><au>Yanagawa, Yuchio</au><au>Sah, Pankaj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A specific class of interneuron mediates inhibitory plasticity in the lateral amygdala</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2010-11-03</date><risdate>2010</risdate><volume>30</volume><issue>44</issue><spage>14619</spage><epage>14629</epage><pages>14619-14629</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The lateral amygdala (LA) plays a key role in emotional learning and is the main site for sensory input into the amygdala. Within the LA, pyramidal neurons comprise the major cell population with plasticity of inputs to these neurons thought to underlie fear learning. Pyramidal neuron activity is tightly controlled by local interneurons, and GABAergic modulation strongly influences amygdala-dependent learning. Synaptic inputs to some interneurons in the LA can also undergo synaptic plasticity, but the identity of these cells and the mechanisms that underlie this plasticity are not known. Here we show that long-term potentiation (LTP) in LA interneurons is restricted to a specific type of interneuron that is defined by the lack of expression of synaptic NR2B subunits. We find that LTP is only present at cortical inputs to these cells and is initiated by calcium influx via calcium-permeable AMPA receptors. LTP is maintained by trafficking of GluR2-lacking AMPA receptors that require an interaction with SAP97 and the actin cytoskeleton. Our results define a novel population of interneurons in the LA that control principal neuron excitability by feed-forward inhibition of cortical origin. This selective enhanced inhibition may contribute to reducing the activity of principal neurons engaged during extinction of conditioned fear.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>21048119</pmid><doi>10.1523/JNEUROSCI.3252-10.2010</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2010-11, Vol.30 (44), p.14619-14629 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6633620 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Afferent Pathways - physiology Amygdala - cytology Amygdala - physiology Animals Cerebral Cortex - physiology Gene Knock-In Techniques Interneurons - classification Interneurons - cytology Interneurons - physiology Long-Term Potentiation - physiology Mice Mice, Transgenic Neural Inhibition - physiology Neuronal Plasticity - physiology Organ Culture Techniques Protein Subunits - physiology Receptors, AMPA - physiology |
title | A specific class of interneuron mediates inhibitory plasticity in the lateral amygdala |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20specific%20class%20of%20interneuron%20mediates%20inhibitory%20plasticity%20in%20the%20lateral%20amygdala&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Polepalli,%20Jai%20S&rft.date=2010-11-03&rft.volume=30&rft.issue=44&rft.spage=14619&rft.epage=14629&rft.pages=14619-14629&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3252-10.2010&rft_dat=%3Cproquest_pubme%3E762471550%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762471550&rft_id=info:pmid/21048119&rfr_iscdi=true |