Resting state functional connectivity and cognitive task-related activation of the human claustrum

Structural and functional analyses of the human claustrum, a poorly understood telencephalic gray matter structure, are hampered by its sheet-like anatomical arrangement. Here, we first describe a functional magnetic resonance imaging (fMRI) method to reveal claustrum signal with no linear relations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2019-08, Vol.196, p.59-67
Hauptverfasser: Krimmel, Samuel R., White, Michael G., Panicker, Matthew H., Barrett, Frederick S., Mathur, Brian N., Seminowicz, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 59
container_title NeuroImage (Orlando, Fla.)
container_volume 196
creator Krimmel, Samuel R.
White, Michael G.
Panicker, Matthew H.
Barrett, Frederick S.
Mathur, Brian N.
Seminowicz, David A.
description Structural and functional analyses of the human claustrum, a poorly understood telencephalic gray matter structure, are hampered by its sheet-like anatomical arrangement. Here, we first describe a functional magnetic resonance imaging (fMRI) method to reveal claustrum signal with no linear relationship with adjacent regions in human subjects. We applied this approach to resting state functional connectivity (RSFC) analysis of the claustrum at high resolution (1.5 mm isotropic voxels) using a 7T dataset (n = 20) and a separate 3T dataset for replication (n = 35). We then assessed claustrum activation during performance of a cognitive task, the multi-source interference task, at 3T (n = 33). Extensive functional connectivity was observed between claustrum and cortical regions associated with cognitive control, including anterior cingulate, prefrontal and parietal cortices. Cognitive task performance was associated with widespread activation and deactivation that overlapped with the cortical areas showing functional connectivity to the claustrum. Furthermore, during high cognitive conflict conditions of the task, the claustrum was significantly activated at the onset of the task, but not during the remainder of the difficult condition. Both of these findings suggest that the human claustrum can be functionally isolated with fMRI, and that it may play a role in cognitive control, and specifically task switching, independent of sensorimotor processing. •Removing signal from neighboring structures isolates claustrum BOLD signal at 7T and 3T field strength.•Claustrum is extensively functionally connected with cortex, including cognitive networks.•Claustrum is activated at the onset of a cognitive conflict task.•Claustrum may be involved in cognition independent of sensorimotor processing.
doi_str_mv 10.1016/j.neuroimage.2019.03.075
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6629463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811919302824</els_id><sourcerecordid>2236640200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-5d171ca99ee63cb031ac72f0c081390fa7101b357dadb1af38f87b4322221a3c3</originalsourceid><addsrcrecordid>eNqFkcuO1DAQRSMEYh7wC8gSGzYJ5TjPDRKMgEEaCQnB2qo4lW43iT3YTkvz91TUw_DY4I1d9rll-94sExIKCbJ5fSgcrcHbBXdUlCD7AlQBbf0oO5fQ13lft-XjbV2rvJOyP8suYjwAQC-r7ml2phiqWinPs-ELxWTdTsSEicS0OpOsdzgL450jLo423Ql0I2_snOWaRML4PQ80s2IUuDG4iYSfRNqT2K8LOmFmXGMK6_IsezLhHOn5_XyZffvw_uvVdX7z-eOnq7c3ualblfJ6lK002PdEjTIDKImmLScw0EnVw4Qtf31QdTviOEicVDd17VCpkodEZdRl9ubU93YdFhoNuRRw1reBbQp32qPVf584u9c7f9RNU_ZVo7jBq_sGwf9Y2Re92GhontGRX6MuS6gr9rfsGH35D3rwa2DbNko1TQUlAFPdiTLBxxhoeniMBL0FqQ_6d5B6C1KD0hwkS1_8-ZkH4a_kGHh3AogtPVoKOhpLztBoA8emR2__f8tPbrW25A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236640200</pqid></control><display><type>article</type><title>Resting state functional connectivity and cognitive task-related activation of the human claustrum</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Krimmel, Samuel R. ; White, Michael G. ; Panicker, Matthew H. ; Barrett, Frederick S. ; Mathur, Brian N. ; Seminowicz, David A.</creator><creatorcontrib>Krimmel, Samuel R. ; White, Michael G. ; Panicker, Matthew H. ; Barrett, Frederick S. ; Mathur, Brian N. ; Seminowicz, David A.</creatorcontrib><description>Structural and functional analyses of the human claustrum, a poorly understood telencephalic gray matter structure, are hampered by its sheet-like anatomical arrangement. Here, we first describe a functional magnetic resonance imaging (fMRI) method to reveal claustrum signal with no linear relationship with adjacent regions in human subjects. We applied this approach to resting state functional connectivity (RSFC) analysis of the claustrum at high resolution (1.5 mm isotropic voxels) using a 7T dataset (n = 20) and a separate 3T dataset for replication (n = 35). We then assessed claustrum activation during performance of a cognitive task, the multi-source interference task, at 3T (n = 33). Extensive functional connectivity was observed between claustrum and cortical regions associated with cognitive control, including anterior cingulate, prefrontal and parietal cortices. Cognitive task performance was associated with widespread activation and deactivation that overlapped with the cortical areas showing functional connectivity to the claustrum. Furthermore, during high cognitive conflict conditions of the task, the claustrum was significantly activated at the onset of the task, but not during the remainder of the difficult condition. Both of these findings suggest that the human claustrum can be functionally isolated with fMRI, and that it may play a role in cognitive control, and specifically task switching, independent of sensorimotor processing. •Removing signal from neighboring structures isolates claustrum BOLD signal at 7T and 3T field strength.•Claustrum is extensively functionally connected with cortex, including cognitive networks.•Claustrum is activated at the onset of a cognitive conflict task.•Claustrum may be involved in cognition independent of sensorimotor processing.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2019.03.075</identifier><identifier>PMID: 30954711</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Attention ; Basal ganglia ; Brain Mapping ; Brain research ; Claustrum - anatomy &amp; histology ; Claustrum - physiology ; Cognition - physiology ; Cognitive ability ; Conflict, Psychological ; Cortex ; Datasets ; Deactivation ; Executive Function - physiology ; Female ; Functional magnetic resonance imaging ; Grants ; Humans ; Hypotheses ; Insula ; Magnetic Resonance Imaging ; Male ; Neural Pathways - anatomy &amp; histology ; Neural Pathways - physiology ; NMR ; Nuclear magnetic resonance ; Prefrontal Cortex - anatomy &amp; histology ; Prefrontal Cortex - physiology ; Putamen ; Reaction Time ; Scanners ; Sensorimotor system ; Striatum ; Structure-function relationships ; Substantia grisea ; Telencephalon ; Thalamus ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2019-08, Vol.196, p.59-67</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-5d171ca99ee63cb031ac72f0c081390fa7101b357dadb1af38f87b4322221a3c3</citedby><cites>FETCH-LOGICAL-c573t-5d171ca99ee63cb031ac72f0c081390fa7101b357dadb1af38f87b4322221a3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811919302824$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30954711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krimmel, Samuel R.</creatorcontrib><creatorcontrib>White, Michael G.</creatorcontrib><creatorcontrib>Panicker, Matthew H.</creatorcontrib><creatorcontrib>Barrett, Frederick S.</creatorcontrib><creatorcontrib>Mathur, Brian N.</creatorcontrib><creatorcontrib>Seminowicz, David A.</creatorcontrib><title>Resting state functional connectivity and cognitive task-related activation of the human claustrum</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Structural and functional analyses of the human claustrum, a poorly understood telencephalic gray matter structure, are hampered by its sheet-like anatomical arrangement. Here, we first describe a functional magnetic resonance imaging (fMRI) method to reveal claustrum signal with no linear relationship with adjacent regions in human subjects. We applied this approach to resting state functional connectivity (RSFC) analysis of the claustrum at high resolution (1.5 mm isotropic voxels) using a 7T dataset (n = 20) and a separate 3T dataset for replication (n = 35). We then assessed claustrum activation during performance of a cognitive task, the multi-source interference task, at 3T (n = 33). Extensive functional connectivity was observed between claustrum and cortical regions associated with cognitive control, including anterior cingulate, prefrontal and parietal cortices. Cognitive task performance was associated with widespread activation and deactivation that overlapped with the cortical areas showing functional connectivity to the claustrum. Furthermore, during high cognitive conflict conditions of the task, the claustrum was significantly activated at the onset of the task, but not during the remainder of the difficult condition. Both of these findings suggest that the human claustrum can be functionally isolated with fMRI, and that it may play a role in cognitive control, and specifically task switching, independent of sensorimotor processing. •Removing signal from neighboring structures isolates claustrum BOLD signal at 7T and 3T field strength.•Claustrum is extensively functionally connected with cortex, including cognitive networks.•Claustrum is activated at the onset of a cognitive conflict task.•Claustrum may be involved in cognition independent of sensorimotor processing.</description><subject>Adult</subject><subject>Attention</subject><subject>Basal ganglia</subject><subject>Brain Mapping</subject><subject>Brain research</subject><subject>Claustrum - anatomy &amp; histology</subject><subject>Claustrum - physiology</subject><subject>Cognition - physiology</subject><subject>Cognitive ability</subject><subject>Conflict, Psychological</subject><subject>Cortex</subject><subject>Datasets</subject><subject>Deactivation</subject><subject>Executive Function - physiology</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Grants</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Insula</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Neural Pathways - anatomy &amp; histology</subject><subject>Neural Pathways - physiology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Prefrontal Cortex - anatomy &amp; histology</subject><subject>Prefrontal Cortex - physiology</subject><subject>Putamen</subject><subject>Reaction Time</subject><subject>Scanners</subject><subject>Sensorimotor system</subject><subject>Striatum</subject><subject>Structure-function relationships</subject><subject>Substantia grisea</subject><subject>Telencephalon</subject><subject>Thalamus</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkcuO1DAQRSMEYh7wC8gSGzYJ5TjPDRKMgEEaCQnB2qo4lW43iT3YTkvz91TUw_DY4I1d9rll-94sExIKCbJ5fSgcrcHbBXdUlCD7AlQBbf0oO5fQ13lft-XjbV2rvJOyP8suYjwAQC-r7ml2phiqWinPs-ELxWTdTsSEicS0OpOsdzgL450jLo423Ql0I2_snOWaRML4PQ80s2IUuDG4iYSfRNqT2K8LOmFmXGMK6_IsezLhHOn5_XyZffvw_uvVdX7z-eOnq7c3ualblfJ6lK002PdEjTIDKImmLScw0EnVw4Qtf31QdTviOEicVDd17VCpkodEZdRl9ubU93YdFhoNuRRw1reBbQp32qPVf584u9c7f9RNU_ZVo7jBq_sGwf9Y2Re92GhontGRX6MuS6gr9rfsGH35D3rwa2DbNko1TQUlAFPdiTLBxxhoeniMBL0FqQ_6d5B6C1KD0hwkS1_8-ZkH4a_kGHh3AogtPVoKOhpLztBoA8emR2__f8tPbrW25A</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Krimmel, Samuel R.</creator><creator>White, Michael G.</creator><creator>Panicker, Matthew H.</creator><creator>Barrett, Frederick S.</creator><creator>Mathur, Brian N.</creator><creator>Seminowicz, David A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190801</creationdate><title>Resting state functional connectivity and cognitive task-related activation of the human claustrum</title><author>Krimmel, Samuel R. ; White, Michael G. ; Panicker, Matthew H. ; Barrett, Frederick S. ; Mathur, Brian N. ; Seminowicz, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-5d171ca99ee63cb031ac72f0c081390fa7101b357dadb1af38f87b4322221a3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Attention</topic><topic>Basal ganglia</topic><topic>Brain Mapping</topic><topic>Brain research</topic><topic>Claustrum - anatomy &amp; histology</topic><topic>Claustrum - physiology</topic><topic>Cognition - physiology</topic><topic>Cognitive ability</topic><topic>Conflict, Psychological</topic><topic>Cortex</topic><topic>Datasets</topic><topic>Deactivation</topic><topic>Executive Function - physiology</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Grants</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Insula</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Neural Pathways - anatomy &amp; histology</topic><topic>Neural Pathways - physiology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Prefrontal Cortex - anatomy &amp; histology</topic><topic>Prefrontal Cortex - physiology</topic><topic>Putamen</topic><topic>Reaction Time</topic><topic>Scanners</topic><topic>Sensorimotor system</topic><topic>Striatum</topic><topic>Structure-function relationships</topic><topic>Substantia grisea</topic><topic>Telencephalon</topic><topic>Thalamus</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krimmel, Samuel R.</creatorcontrib><creatorcontrib>White, Michael G.</creatorcontrib><creatorcontrib>Panicker, Matthew H.</creatorcontrib><creatorcontrib>Barrett, Frederick S.</creatorcontrib><creatorcontrib>Mathur, Brian N.</creatorcontrib><creatorcontrib>Seminowicz, David A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krimmel, Samuel R.</au><au>White, Michael G.</au><au>Panicker, Matthew H.</au><au>Barrett, Frederick S.</au><au>Mathur, Brian N.</au><au>Seminowicz, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting state functional connectivity and cognitive task-related activation of the human claustrum</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>196</volume><spage>59</spage><epage>67</epage><pages>59-67</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Structural and functional analyses of the human claustrum, a poorly understood telencephalic gray matter structure, are hampered by its sheet-like anatomical arrangement. Here, we first describe a functional magnetic resonance imaging (fMRI) method to reveal claustrum signal with no linear relationship with adjacent regions in human subjects. We applied this approach to resting state functional connectivity (RSFC) analysis of the claustrum at high resolution (1.5 mm isotropic voxels) using a 7T dataset (n = 20) and a separate 3T dataset for replication (n = 35). We then assessed claustrum activation during performance of a cognitive task, the multi-source interference task, at 3T (n = 33). Extensive functional connectivity was observed between claustrum and cortical regions associated with cognitive control, including anterior cingulate, prefrontal and parietal cortices. Cognitive task performance was associated with widespread activation and deactivation that overlapped with the cortical areas showing functional connectivity to the claustrum. Furthermore, during high cognitive conflict conditions of the task, the claustrum was significantly activated at the onset of the task, but not during the remainder of the difficult condition. Both of these findings suggest that the human claustrum can be functionally isolated with fMRI, and that it may play a role in cognitive control, and specifically task switching, independent of sensorimotor processing. •Removing signal from neighboring structures isolates claustrum BOLD signal at 7T and 3T field strength.•Claustrum is extensively functionally connected with cortex, including cognitive networks.•Claustrum is activated at the onset of a cognitive conflict task.•Claustrum may be involved in cognition independent of sensorimotor processing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30954711</pmid><doi>10.1016/j.neuroimage.2019.03.075</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2019-08, Vol.196, p.59-67
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6629463
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Attention
Basal ganglia
Brain Mapping
Brain research
Claustrum - anatomy & histology
Claustrum - physiology
Cognition - physiology
Cognitive ability
Conflict, Psychological
Cortex
Datasets
Deactivation
Executive Function - physiology
Female
Functional magnetic resonance imaging
Grants
Humans
Hypotheses
Insula
Magnetic Resonance Imaging
Male
Neural Pathways - anatomy & histology
Neural Pathways - physiology
NMR
Nuclear magnetic resonance
Prefrontal Cortex - anatomy & histology
Prefrontal Cortex - physiology
Putamen
Reaction Time
Scanners
Sensorimotor system
Striatum
Structure-function relationships
Substantia grisea
Telencephalon
Thalamus
Young Adult
title Resting state functional connectivity and cognitive task-related activation of the human claustrum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting%20state%20functional%20connectivity%20and%20cognitive%20task-related%20activation%20of%20the%20human%20claustrum&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Krimmel,%20Samuel%20R.&rft.date=2019-08-01&rft.volume=196&rft.spage=59&rft.epage=67&rft.pages=59-67&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2019.03.075&rft_dat=%3Cproquest_pubme%3E2236640200%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236640200&rft_id=info:pmid/30954711&rft_els_id=S1053811919302824&rfr_iscdi=true