Cyanobacterial viruses exhibit diurnal rhythms during infection
As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the maj...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-07, Vol.116 (28), p.14077-14082 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14082 |
---|---|
container_issue | 28 |
container_start_page | 14077 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Liu, Riyue Liu, Yaxin Chen, Yue Zhan, Yuanchao Zeng, Qinglu |
description | As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light–dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans. |
doi_str_mv | 10.1073/pnas.1819689116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6628666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26760989</jstor_id><sourcerecordid>26760989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-68d4c5e2369c41f2fc98fdff2882f2897dd09f606226bbd01a13bccfcf658c673</originalsourceid><addsrcrecordid>eNpdkUFv2zAMhYViQ5ulPfe0wcAuu7ilZJmWLiuGoNsKFNhlOwuyLDUKHCmT7KL593WaLl17IQHy4wPJR8g5hQsKTXW5CTpfUEElCkkpHpEZBUlL5BLekRkAa0rBGT8hH3JeAYCsBRyTk4qyqq4lnZGrxVaH2Goz2OR1X9z7NGabC_uw9K0fis6PKUz1tNwOy3UuujH5cFf44KwZfAyn5L3TfbZnz3lO_ny__r34Wd7--nGz-HZbGs6roUTRcVNbVqE0nDrmjBSuc44JwaYgm64D6RCQMWzbDqimVWuMMw5rYbCp5uTrXncztmvbGRuGpHu1SX6t01ZF7dXrTvBLdRfvFSITiDgJfHkWSPHvaPOg1j4b2_c62DhmxRhHCcinz8zJ5zfoKj59YUehQAGCyYm63FMmxZyTdYdlKKidOWpnjnoxZ5r49P8NB_6fGxPwcQ-s8hDToc-wQZBCVo93VpYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268680829</pqid></control><display><type>article</type><title>Cyanobacterial viruses exhibit diurnal rhythms during infection</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Riyue ; Liu, Yaxin ; Chen, Yue ; Zhan, Yuanchao ; Zeng, Qinglu</creator><creatorcontrib>Liu, Riyue ; Liu, Yaxin ; Chen, Yue ; Zhan, Yuanchao ; Zeng, Qinglu</creatorcontrib><description>As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light–dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1819689116</identifier><identifier>PMID: 31235591</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adsorption ; Bacteriophages - genetics ; Bacteriophages - pathogenicity ; Bacteriophages - physiology ; Biological Sciences ; Cell culture ; Cell cycle ; Circadian Rhythm - genetics ; Circadian Rhythm - physiology ; Cyanobacteria ; Dark adaptation ; Diurnal ; Gene expression ; Gene Expression Regulation, Viral - genetics ; Host-Pathogen Interactions - genetics ; Infections ; Laboratories ; Laboratory culture ; Life cycles ; Life history ; Light ; Oceans ; Phages ; Photoperiod ; Photosynthesis ; Photosynthesis - genetics ; Physical Sciences ; Prochlorococcus ; Prochlorococcus - genetics ; Prochlorococcus - virology ; Replication ; Rhythm ; Rhythms ; Synechococcus ; Synechococcus - genetics ; Synechococcus - virology ; Transcription ; Virus Diseases - genetics ; Virus Replication - genetics ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-07, Vol.116 (28), p.14077-14082</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 9, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-68d4c5e2369c41f2fc98fdff2882f2897dd09f606226bbd01a13bccfcf658c673</citedby><cites>FETCH-LOGICAL-c443t-68d4c5e2369c41f2fc98fdff2882f2897dd09f606226bbd01a13bccfcf658c673</cites><orcidid>0000-0002-8566-1937 ; 0000-0002-5616-7155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26760989$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26760989$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31235591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Riyue</creatorcontrib><creatorcontrib>Liu, Yaxin</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Zhan, Yuanchao</creatorcontrib><creatorcontrib>Zeng, Qinglu</creatorcontrib><title>Cyanobacterial viruses exhibit diurnal rhythms during infection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light–dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans.</description><subject>Adsorption</subject><subject>Bacteriophages - genetics</subject><subject>Bacteriophages - pathogenicity</subject><subject>Bacteriophages - physiology</subject><subject>Biological Sciences</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm - physiology</subject><subject>Cyanobacteria</subject><subject>Dark adaptation</subject><subject>Diurnal</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Viral - genetics</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Infections</subject><subject>Laboratories</subject><subject>Laboratory culture</subject><subject>Life cycles</subject><subject>Life history</subject><subject>Light</subject><subject>Oceans</subject><subject>Phages</subject><subject>Photoperiod</subject><subject>Photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Physical Sciences</subject><subject>Prochlorococcus</subject><subject>Prochlorococcus - genetics</subject><subject>Prochlorococcus - virology</subject><subject>Replication</subject><subject>Rhythm</subject><subject>Rhythms</subject><subject>Synechococcus</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - virology</subject><subject>Transcription</subject><subject>Virus Diseases - genetics</subject><subject>Virus Replication - genetics</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFv2zAMhYViQ5ulPfe0wcAuu7ilZJmWLiuGoNsKFNhlOwuyLDUKHCmT7KL593WaLl17IQHy4wPJR8g5hQsKTXW5CTpfUEElCkkpHpEZBUlL5BLekRkAa0rBGT8hH3JeAYCsBRyTk4qyqq4lnZGrxVaH2Goz2OR1X9z7NGabC_uw9K0fis6PKUz1tNwOy3UuujH5cFf44KwZfAyn5L3TfbZnz3lO_ny__r34Wd7--nGz-HZbGs6roUTRcVNbVqE0nDrmjBSuc44JwaYgm64D6RCQMWzbDqimVWuMMw5rYbCp5uTrXncztmvbGRuGpHu1SX6t01ZF7dXrTvBLdRfvFSITiDgJfHkWSPHvaPOg1j4b2_c62DhmxRhHCcinz8zJ5zfoKj59YUehQAGCyYm63FMmxZyTdYdlKKidOWpnjnoxZ5r49P8NB_6fGxPwcQ-s8hDToc-wQZBCVo93VpYw</recordid><startdate>20190709</startdate><enddate>20190709</enddate><creator>Liu, Riyue</creator><creator>Liu, Yaxin</creator><creator>Chen, Yue</creator><creator>Zhan, Yuanchao</creator><creator>Zeng, Qinglu</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8566-1937</orcidid><orcidid>https://orcid.org/0000-0002-5616-7155</orcidid></search><sort><creationdate>20190709</creationdate><title>Cyanobacterial viruses exhibit diurnal rhythms during infection</title><author>Liu, Riyue ; Liu, Yaxin ; Chen, Yue ; Zhan, Yuanchao ; Zeng, Qinglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-68d4c5e2369c41f2fc98fdff2882f2897dd09f606226bbd01a13bccfcf658c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Bacteriophages - genetics</topic><topic>Bacteriophages - pathogenicity</topic><topic>Bacteriophages - physiology</topic><topic>Biological Sciences</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm - physiology</topic><topic>Cyanobacteria</topic><topic>Dark adaptation</topic><topic>Diurnal</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Viral - genetics</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Infections</topic><topic>Laboratories</topic><topic>Laboratory culture</topic><topic>Life cycles</topic><topic>Life history</topic><topic>Light</topic><topic>Oceans</topic><topic>Phages</topic><topic>Photoperiod</topic><topic>Photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Physical Sciences</topic><topic>Prochlorococcus</topic><topic>Prochlorococcus - genetics</topic><topic>Prochlorococcus - virology</topic><topic>Replication</topic><topic>Rhythm</topic><topic>Rhythms</topic><topic>Synechococcus</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - virology</topic><topic>Transcription</topic><topic>Virus Diseases - genetics</topic><topic>Virus Replication - genetics</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Riyue</creatorcontrib><creatorcontrib>Liu, Yaxin</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Zhan, Yuanchao</creatorcontrib><creatorcontrib>Zeng, Qinglu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Riyue</au><au>Liu, Yaxin</au><au>Chen, Yue</au><au>Zhan, Yuanchao</au><au>Zeng, Qinglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyanobacterial viruses exhibit diurnal rhythms during infection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-07-09</date><risdate>2019</risdate><volume>116</volume><issue>28</issue><spage>14077</spage><epage>14082</epage><pages>14077-14082</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light–dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31235591</pmid><doi>10.1073/pnas.1819689116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8566-1937</orcidid><orcidid>https://orcid.org/0000-0002-5616-7155</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-07, Vol.116 (28), p.14077-14082 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6628666 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adsorption Bacteriophages - genetics Bacteriophages - pathogenicity Bacteriophages - physiology Biological Sciences Cell culture Cell cycle Circadian Rhythm - genetics Circadian Rhythm - physiology Cyanobacteria Dark adaptation Diurnal Gene expression Gene Expression Regulation, Viral - genetics Host-Pathogen Interactions - genetics Infections Laboratories Laboratory culture Life cycles Life history Light Oceans Phages Photoperiod Photosynthesis Photosynthesis - genetics Physical Sciences Prochlorococcus Prochlorococcus - genetics Prochlorococcus - virology Replication Rhythm Rhythms Synechococcus Synechococcus - genetics Synechococcus - virology Transcription Virus Diseases - genetics Virus Replication - genetics Viruses |
title | Cyanobacterial viruses exhibit diurnal rhythms during infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyanobacterial%20viruses%20exhibit%20diurnal%20rhythms%20during%20infection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Riyue&rft.date=2019-07-09&rft.volume=116&rft.issue=28&rft.spage=14077&rft.epage=14082&rft.pages=14077-14082&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1819689116&rft_dat=%3Cjstor_pubme%3E26760989%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268680829&rft_id=info:pmid/31235591&rft_jstor_id=26760989&rfr_iscdi=true |