Cyanobacterial viruses exhibit diurnal rhythms during infection

As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the maj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-07, Vol.116 (28), p.14077-14082
Hauptverfasser: Liu, Riyue, Liu, Yaxin, Chen, Yue, Zhan, Yuanchao, Zeng, Qinglu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14082
container_issue 28
container_start_page 14077
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Liu, Riyue
Liu, Yaxin
Chen, Yue
Zhan, Yuanchao
Zeng, Qinglu
description As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light–dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans.
doi_str_mv 10.1073/pnas.1819689116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6628666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26760989</jstor_id><sourcerecordid>26760989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-68d4c5e2369c41f2fc98fdff2882f2897dd09f606226bbd01a13bccfcf658c673</originalsourceid><addsrcrecordid>eNpdkUFv2zAMhYViQ5ulPfe0wcAuu7ilZJmWLiuGoNsKFNhlOwuyLDUKHCmT7KL593WaLl17IQHy4wPJR8g5hQsKTXW5CTpfUEElCkkpHpEZBUlL5BLekRkAa0rBGT8hH3JeAYCsBRyTk4qyqq4lnZGrxVaH2Goz2OR1X9z7NGabC_uw9K0fis6PKUz1tNwOy3UuujH5cFf44KwZfAyn5L3TfbZnz3lO_ny__r34Wd7--nGz-HZbGs6roUTRcVNbVqE0nDrmjBSuc44JwaYgm64D6RCQMWzbDqimVWuMMw5rYbCp5uTrXncztmvbGRuGpHu1SX6t01ZF7dXrTvBLdRfvFSITiDgJfHkWSPHvaPOg1j4b2_c62DhmxRhHCcinz8zJ5zfoKj59YUehQAGCyYm63FMmxZyTdYdlKKidOWpnjnoxZ5r49P8NB_6fGxPwcQ-s8hDToc-wQZBCVo93VpYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268680829</pqid></control><display><type>article</type><title>Cyanobacterial viruses exhibit diurnal rhythms during infection</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Riyue ; Liu, Yaxin ; Chen, Yue ; Zhan, Yuanchao ; Zeng, Qinglu</creator><creatorcontrib>Liu, Riyue ; Liu, Yaxin ; Chen, Yue ; Zhan, Yuanchao ; Zeng, Qinglu</creatorcontrib><description>As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light–dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1819689116</identifier><identifier>PMID: 31235591</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adsorption ; Bacteriophages - genetics ; Bacteriophages - pathogenicity ; Bacteriophages - physiology ; Biological Sciences ; Cell culture ; Cell cycle ; Circadian Rhythm - genetics ; Circadian Rhythm - physiology ; Cyanobacteria ; Dark adaptation ; Diurnal ; Gene expression ; Gene Expression Regulation, Viral - genetics ; Host-Pathogen Interactions - genetics ; Infections ; Laboratories ; Laboratory culture ; Life cycles ; Life history ; Light ; Oceans ; Phages ; Photoperiod ; Photosynthesis ; Photosynthesis - genetics ; Physical Sciences ; Prochlorococcus ; Prochlorococcus - genetics ; Prochlorococcus - virology ; Replication ; Rhythm ; Rhythms ; Synechococcus ; Synechococcus - genetics ; Synechococcus - virology ; Transcription ; Virus Diseases - genetics ; Virus Replication - genetics ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-07, Vol.116 (28), p.14077-14082</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 9, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-68d4c5e2369c41f2fc98fdff2882f2897dd09f606226bbd01a13bccfcf658c673</citedby><cites>FETCH-LOGICAL-c443t-68d4c5e2369c41f2fc98fdff2882f2897dd09f606226bbd01a13bccfcf658c673</cites><orcidid>0000-0002-8566-1937 ; 0000-0002-5616-7155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26760989$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26760989$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31235591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Riyue</creatorcontrib><creatorcontrib>Liu, Yaxin</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Zhan, Yuanchao</creatorcontrib><creatorcontrib>Zeng, Qinglu</creatorcontrib><title>Cyanobacterial viruses exhibit diurnal rhythms during infection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light–dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans.</description><subject>Adsorption</subject><subject>Bacteriophages - genetics</subject><subject>Bacteriophages - pathogenicity</subject><subject>Bacteriophages - physiology</subject><subject>Biological Sciences</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm - physiology</subject><subject>Cyanobacteria</subject><subject>Dark adaptation</subject><subject>Diurnal</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Viral - genetics</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Infections</subject><subject>Laboratories</subject><subject>Laboratory culture</subject><subject>Life cycles</subject><subject>Life history</subject><subject>Light</subject><subject>Oceans</subject><subject>Phages</subject><subject>Photoperiod</subject><subject>Photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Physical Sciences</subject><subject>Prochlorococcus</subject><subject>Prochlorococcus - genetics</subject><subject>Prochlorococcus - virology</subject><subject>Replication</subject><subject>Rhythm</subject><subject>Rhythms</subject><subject>Synechococcus</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - virology</subject><subject>Transcription</subject><subject>Virus Diseases - genetics</subject><subject>Virus Replication - genetics</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFv2zAMhYViQ5ulPfe0wcAuu7ilZJmWLiuGoNsKFNhlOwuyLDUKHCmT7KL593WaLl17IQHy4wPJR8g5hQsKTXW5CTpfUEElCkkpHpEZBUlL5BLekRkAa0rBGT8hH3JeAYCsBRyTk4qyqq4lnZGrxVaH2Goz2OR1X9z7NGabC_uw9K0fis6PKUz1tNwOy3UuujH5cFf44KwZfAyn5L3TfbZnz3lO_ny__r34Wd7--nGz-HZbGs6roUTRcVNbVqE0nDrmjBSuc44JwaYgm64D6RCQMWzbDqimVWuMMw5rYbCp5uTrXncztmvbGRuGpHu1SX6t01ZF7dXrTvBLdRfvFSITiDgJfHkWSPHvaPOg1j4b2_c62DhmxRhHCcinz8zJ5zfoKj59YUehQAGCyYm63FMmxZyTdYdlKKidOWpnjnoxZ5r49P8NB_6fGxPwcQ-s8hDToc-wQZBCVo93VpYw</recordid><startdate>20190709</startdate><enddate>20190709</enddate><creator>Liu, Riyue</creator><creator>Liu, Yaxin</creator><creator>Chen, Yue</creator><creator>Zhan, Yuanchao</creator><creator>Zeng, Qinglu</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8566-1937</orcidid><orcidid>https://orcid.org/0000-0002-5616-7155</orcidid></search><sort><creationdate>20190709</creationdate><title>Cyanobacterial viruses exhibit diurnal rhythms during infection</title><author>Liu, Riyue ; Liu, Yaxin ; Chen, Yue ; Zhan, Yuanchao ; Zeng, Qinglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-68d4c5e2369c41f2fc98fdff2882f2897dd09f606226bbd01a13bccfcf658c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Bacteriophages - genetics</topic><topic>Bacteriophages - pathogenicity</topic><topic>Bacteriophages - physiology</topic><topic>Biological Sciences</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm - physiology</topic><topic>Cyanobacteria</topic><topic>Dark adaptation</topic><topic>Diurnal</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Viral - genetics</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Infections</topic><topic>Laboratories</topic><topic>Laboratory culture</topic><topic>Life cycles</topic><topic>Life history</topic><topic>Light</topic><topic>Oceans</topic><topic>Phages</topic><topic>Photoperiod</topic><topic>Photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Physical Sciences</topic><topic>Prochlorococcus</topic><topic>Prochlorococcus - genetics</topic><topic>Prochlorococcus - virology</topic><topic>Replication</topic><topic>Rhythm</topic><topic>Rhythms</topic><topic>Synechococcus</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - virology</topic><topic>Transcription</topic><topic>Virus Diseases - genetics</topic><topic>Virus Replication - genetics</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Riyue</creatorcontrib><creatorcontrib>Liu, Yaxin</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Zhan, Yuanchao</creatorcontrib><creatorcontrib>Zeng, Qinglu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Riyue</au><au>Liu, Yaxin</au><au>Chen, Yue</au><au>Zhan, Yuanchao</au><au>Zeng, Qinglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyanobacterial viruses exhibit diurnal rhythms during infection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-07-09</date><risdate>2019</risdate><volume>116</volume><issue>28</issue><spage>14077</spage><epage>14082</epage><pages>14077-14082</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light–dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31235591</pmid><doi>10.1073/pnas.1819689116</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8566-1937</orcidid><orcidid>https://orcid.org/0000-0002-5616-7155</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-07, Vol.116 (28), p.14077-14082
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6628666
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adsorption
Bacteriophages - genetics
Bacteriophages - pathogenicity
Bacteriophages - physiology
Biological Sciences
Cell culture
Cell cycle
Circadian Rhythm - genetics
Circadian Rhythm - physiology
Cyanobacteria
Dark adaptation
Diurnal
Gene expression
Gene Expression Regulation, Viral - genetics
Host-Pathogen Interactions - genetics
Infections
Laboratories
Laboratory culture
Life cycles
Life history
Light
Oceans
Phages
Photoperiod
Photosynthesis
Photosynthesis - genetics
Physical Sciences
Prochlorococcus
Prochlorococcus - genetics
Prochlorococcus - virology
Replication
Rhythm
Rhythms
Synechococcus
Synechococcus - genetics
Synechococcus - virology
Transcription
Virus Diseases - genetics
Virus Replication - genetics
Viruses
title Cyanobacterial viruses exhibit diurnal rhythms during infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyanobacterial%20viruses%20exhibit%20diurnal%20rhythms%20during%20infection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Riyue&rft.date=2019-07-09&rft.volume=116&rft.issue=28&rft.spage=14077&rft.epage=14082&rft.pages=14077-14082&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1819689116&rft_dat=%3Cjstor_pubme%3E26760989%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268680829&rft_id=info:pmid/31235591&rft_jstor_id=26760989&rfr_iscdi=true