High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability
The motion of red blood cells (RBCs) in microchannels is important for microvascular blood flow and biomedical applications such as blood analysis in microfluidics. The current understanding of the complexity of RBC shapes and dynamics in microchannels is mainly based on several simulation studies,...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2019-07, Vol.117 (1), p.14-24 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | Biophysical journal |
container_volume | 117 |
creator | Reichel, Felix Mauer, Johannes Nawaz, Ahmad Ahsan Gompper, Gerhard Guck, Jochen Fedosov, Dmitry A. |
description | The motion of red blood cells (RBCs) in microchannels is important for microvascular blood flow and biomedical applications such as blood analysis in microfluidics. The current understanding of the complexity of RBC shapes and dynamics in microchannels is mainly based on several simulation studies, but there are a few systematic experimental investigations. Here, we present a combined study that systematically characterizes RBC behavior for a wide range of flow rates and channel sizes. Even though simulations and experiments generally show good agreement, experimental observations demonstrate that there is no single well-defined RBC state for fixed flow conditions but rather a broad distribution of states. This result can be attributed to the inherent variability in RBC mechanical properties, which is confirmed by a model that takes the variation in RBC shear elasticity into account. This represents a significant step toward a quantitative connection between RBC behavior in microfluidic devices and their mechanical properties, which is essential for a high-throughput characterization of diseased cells. |
doi_str_mv | 10.1016/j.bpj.2019.05.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6626834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349519304242</els_id><sourcerecordid>2246907093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-911cda4b621d4ea85dc612ec11bfa956dd83f09ac880a184da60c94e0c9743703</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EokvhAbigHLkkjB3HmwgJCa1aitSKA6XHWhN7svEqmwTbqbR9elxtqeiFi-fgb_4ZzcfYew4FB64-7Yp23hUCeFNAVYAQL9iKV1LkALV6yVYAoPJSNtUJexPCDoCLCvhrdlJyUVZ83azY7YXb9vl176dl289LzK6c8VM3LM46k2169GgieXeP0U1jNnXZmT_EhJtDpOxnjzOFDEebXZHpcXQGh-wGvcPWDS4e3rJXHQ6B3j3WU_br_Ox6c5Ff_vj2ffP1Mjey4jFvODcWZasEt5KwrqxRXJDhvO2wqZS1ddlBg6auAXktLSowjaT0rGW5hvKUfTnmzku7J2tojB4HPXu3R3_QEzr9_Gd0vd5Od1opoepSpoCPjwF--r1QiHrvgqFhwJGmJWghpGpgDU2ZUH5E06FC8NQ9jeGgH7zonU5e9IMXDZVOXlLPh3_3e-r4KyIBn48ApSvdOfI6GEejIes8majt5P4T_wcpqaCU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246907093</pqid></control><display><type>article</type><title>High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability</title><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Reichel, Felix ; Mauer, Johannes ; Nawaz, Ahmad Ahsan ; Gompper, Gerhard ; Guck, Jochen ; Fedosov, Dmitry A.</creator><creatorcontrib>Reichel, Felix ; Mauer, Johannes ; Nawaz, Ahmad Ahsan ; Gompper, Gerhard ; Guck, Jochen ; Fedosov, Dmitry A.</creatorcontrib><description>The motion of red blood cells (RBCs) in microchannels is important for microvascular blood flow and biomedical applications such as blood analysis in microfluidics. The current understanding of the complexity of RBC shapes and dynamics in microchannels is mainly based on several simulation studies, but there are a few systematic experimental investigations. Here, we present a combined study that systematically characterizes RBC behavior for a wide range of flow rates and channel sizes. Even though simulations and experiments generally show good agreement, experimental observations demonstrate that there is no single well-defined RBC state for fixed flow conditions but rather a broad distribution of states. This result can be attributed to the inherent variability in RBC mechanical properties, which is confirmed by a model that takes the variation in RBC shear elasticity into account. This represents a significant step toward a quantitative connection between RBC behavior in microfluidic devices and their mechanical properties, which is essential for a high-throughput characterization of diseased cells.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2019.05.022</identifier><identifier>PMID: 31235179</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Biophysical journal, 2019-07, Vol.117 (1), p.14-24</ispartof><rights>2019 Biophysical Society</rights><rights>Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2019 Biophysical Society. 2019 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-911cda4b621d4ea85dc612ec11bfa956dd83f09ac880a184da60c94e0c9743703</citedby><cites>FETCH-LOGICAL-c451t-911cda4b621d4ea85dc612ec11bfa956dd83f09ac880a184da60c94e0c9743703</cites><orcidid>0000-0001-5354-865X ; 0000-0002-8904-0986 ; 0000-0002-1453-6119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6626834/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2019.05.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31235179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reichel, Felix</creatorcontrib><creatorcontrib>Mauer, Johannes</creatorcontrib><creatorcontrib>Nawaz, Ahmad Ahsan</creatorcontrib><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><creatorcontrib>Fedosov, Dmitry A.</creatorcontrib><title>High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The motion of red blood cells (RBCs) in microchannels is important for microvascular blood flow and biomedical applications such as blood analysis in microfluidics. The current understanding of the complexity of RBC shapes and dynamics in microchannels is mainly based on several simulation studies, but there are a few systematic experimental investigations. Here, we present a combined study that systematically characterizes RBC behavior for a wide range of flow rates and channel sizes. Even though simulations and experiments generally show good agreement, experimental observations demonstrate that there is no single well-defined RBC state for fixed flow conditions but rather a broad distribution of states. This result can be attributed to the inherent variability in RBC mechanical properties, which is confirmed by a model that takes the variation in RBC shear elasticity into account. This represents a significant step toward a quantitative connection between RBC behavior in microfluidic devices and their mechanical properties, which is essential for a high-throughput characterization of diseased cells.</description><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0EokvhAbigHLkkjB3HmwgJCa1aitSKA6XHWhN7svEqmwTbqbR9elxtqeiFi-fgb_4ZzcfYew4FB64-7Yp23hUCeFNAVYAQL9iKV1LkALV6yVYAoPJSNtUJexPCDoCLCvhrdlJyUVZ83azY7YXb9vl176dl289LzK6c8VM3LM46k2169GgieXeP0U1jNnXZmT_EhJtDpOxnjzOFDEebXZHpcXQGh-wGvcPWDS4e3rJXHQ6B3j3WU_br_Ox6c5Ff_vj2ffP1Mjey4jFvODcWZasEt5KwrqxRXJDhvO2wqZS1ddlBg6auAXktLSowjaT0rGW5hvKUfTnmzku7J2tojB4HPXu3R3_QEzr9_Gd0vd5Od1opoepSpoCPjwF--r1QiHrvgqFhwJGmJWghpGpgDU2ZUH5E06FC8NQ9jeGgH7zonU5e9IMXDZVOXlLPh3_3e-r4KyIBn48ApSvdOfI6GEejIes8majt5P4T_wcpqaCU</recordid><startdate>20190709</startdate><enddate>20190709</enddate><creator>Reichel, Felix</creator><creator>Mauer, Johannes</creator><creator>Nawaz, Ahmad Ahsan</creator><creator>Gompper, Gerhard</creator><creator>Guck, Jochen</creator><creator>Fedosov, Dmitry A.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5354-865X</orcidid><orcidid>https://orcid.org/0000-0002-8904-0986</orcidid><orcidid>https://orcid.org/0000-0002-1453-6119</orcidid></search><sort><creationdate>20190709</creationdate><title>High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability</title><author>Reichel, Felix ; Mauer, Johannes ; Nawaz, Ahmad Ahsan ; Gompper, Gerhard ; Guck, Jochen ; Fedosov, Dmitry A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-911cda4b621d4ea85dc612ec11bfa956dd83f09ac880a184da60c94e0c9743703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reichel, Felix</creatorcontrib><creatorcontrib>Mauer, Johannes</creatorcontrib><creatorcontrib>Nawaz, Ahmad Ahsan</creatorcontrib><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><creatorcontrib>Fedosov, Dmitry A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reichel, Felix</au><au>Mauer, Johannes</au><au>Nawaz, Ahmad Ahsan</au><au>Gompper, Gerhard</au><au>Guck, Jochen</au><au>Fedosov, Dmitry A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2019-07-09</date><risdate>2019</risdate><volume>117</volume><issue>1</issue><spage>14</spage><epage>24</epage><pages>14-24</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The motion of red blood cells (RBCs) in microchannels is important for microvascular blood flow and biomedical applications such as blood analysis in microfluidics. The current understanding of the complexity of RBC shapes and dynamics in microchannels is mainly based on several simulation studies, but there are a few systematic experimental investigations. Here, we present a combined study that systematically characterizes RBC behavior for a wide range of flow rates and channel sizes. Even though simulations and experiments generally show good agreement, experimental observations demonstrate that there is no single well-defined RBC state for fixed flow conditions but rather a broad distribution of states. This result can be attributed to the inherent variability in RBC mechanical properties, which is confirmed by a model that takes the variation in RBC shear elasticity into account. This represents a significant step toward a quantitative connection between RBC behavior in microfluidic devices and their mechanical properties, which is essential for a high-throughput characterization of diseased cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31235179</pmid><doi>10.1016/j.bpj.2019.05.022</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5354-865X</orcidid><orcidid>https://orcid.org/0000-0002-8904-0986</orcidid><orcidid>https://orcid.org/0000-0002-1453-6119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2019-07, Vol.117 (1), p.14-24 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6626834 |
source | Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Microfluidic%20Characterization%20of%20Erythrocyte%20Shapes%20and%20Mechanical%20Variability&rft.jtitle=Biophysical%20journal&rft.au=Reichel,%20Felix&rft.date=2019-07-09&rft.volume=117&rft.issue=1&rft.spage=14&rft.epage=24&rft.pages=14-24&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2019.05.022&rft_dat=%3Cproquest_pubme%3E2246907093%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2246907093&rft_id=info:pmid/31235179&rft_els_id=S0006349519304242&rfr_iscdi=true |