Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation

Chemical synthesis typically relies on reactions that generate complexity through elaboration of simple starting materials. Less common are deconstructive strategies toward complexity—particularly those involving carbon-carbon bond scission. Here, we introduce one such transformation: the hydrodealk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-05, Vol.364 (6441), p.681-685
Hauptverfasser: Smaligo, Andrew J., Swain, Manisha, Quintana, Jason C., Tan, Mikayla F., Kim, Danielle A., Kwon, Ohyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 685
container_issue 6441
container_start_page 681
container_title Science (American Association for the Advancement of Science)
container_volume 364
creator Smaligo, Andrew J.
Swain, Manisha
Quintana, Jason C.
Tan, Mikayla F.
Kim, Danielle A.
Kwon, Ohyun
description Chemical synthesis typically relies on reactions that generate complexity through elaboration of simple starting materials. Less common are deconstructive strategies toward complexity—particularly those involving carbon-carbon bond scission. Here, we introduce one such transformation: the hydrodealkenylative cleavage of C(sp³)–C(sp²) bonds, conducted below room temperature, using ozone, an iron salt, and a hydrogen atom donor. These reactions are performed in nonanhydrous solvents and open to the air; reach completion within 30 minutes; and deliver their products in high yields, even on decagram scales. We have used this broadly functionality tolerant transformation to produce desirable synthetic intermediates, many of which are optically active, from abundantly available terpenes and terpenoid-derived precursors. We have also applied it in the formal total syntheses of complex molecules.
doi_str_mv 10.1126/science.aaw4212
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6625654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26649471</jstor_id><sourcerecordid>26649471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-b7f4781cda54a7b547db00878e9c9b36ca802cca1042a7303e25344b0251cf83</originalsourceid><addsrcrecordid>eNpdkU1OwzAQhS0EoqWwZgWqxKZdpPW_kw0SqoAiVWLD3nIcp6SkcbGTou64AzeBG3AUToKhpQIW1lh637yZ0QPgGMEBQpgPvS5Mpc1AqSeKEd4BbQQTFiUYkl3QhpDwKIaCtcCB9zMIg5aQfdAigRKcizaIx6vM2cyo8sFUq1LVxdJ0Rz2_eH_rfzy_fP9e-93UVlk3d2o6N1UdIFsdgr1cld4cbWoH3F1d3o3G0eT2-mZ0MYk0o7yOUpFTESOdKUaVSBkVWQphLGKT6CQlXKsYYq0VghQrQSAxmBFKU4gZ0nlMOuB8bbto0rnJdBjvVCkXrpgrt5JWFfKvUhX3cmqXknPMOKPBoLcxcPaxMb6W88JrU5aqMrbxEmOCIUsSKgJ69g-d2cZV4bpA4Tg8InighmtKO-u9M_l2GQTlVyhyE4rchBI6Tn_fsOV_UgjAyRqY-dq6rY45p2EvRD4BTBaVqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228222376</pqid></control><display><type>article</type><title>Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation</title><source>American Association for the Advancement of Science</source><creator>Smaligo, Andrew J. ; Swain, Manisha ; Quintana, Jason C. ; Tan, Mikayla F. ; Kim, Danielle A. ; Kwon, Ohyun</creator><creatorcontrib>Smaligo, Andrew J. ; Swain, Manisha ; Quintana, Jason C. ; Tan, Mikayla F. ; Kim, Danielle A. ; Kwon, Ohyun</creatorcontrib><description>Chemical synthesis typically relies on reactions that generate complexity through elaboration of simple starting materials. Less common are deconstructive strategies toward complexity—particularly those involving carbon-carbon bond scission. Here, we introduce one such transformation: the hydrodealkenylative cleavage of C(sp³)–C(sp²) bonds, conducted below room temperature, using ozone, an iron salt, and a hydrogen atom donor. These reactions are performed in nonanhydrous solvents and open to the air; reach completion within 30 minutes; and deliver their products in high yields, even on decagram scales. We have used this broadly functionality tolerant transformation to produce desirable synthetic intermediates, many of which are optically active, from abundantly available terpenes and terpenoid-derived precursors. We have also applied it in the formal total syntheses of complex molecules.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaw4212</identifier><identifier>PMID: 31097667</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Alkenes ; Carbon ; Chemical reactions ; Chemical synthesis ; Chemistry ; Cleavage ; Complexity ; Fine chemicals ; Intermediates ; Iron ; Optical activity ; Organic chemistry ; Oxidizing agents ; Ozone ; Precursors ; Terpenes</subject><ispartof>Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6441), p.681-685</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-b7f4781cda54a7b547db00878e9c9b36ca802cca1042a7303e25344b0251cf83</citedby><cites>FETCH-LOGICAL-c546t-b7f4781cda54a7b547db00878e9c9b36ca802cca1042a7303e25344b0251cf83</cites><orcidid>0000-0002-5405-3971 ; 0000-0003-0372-2618 ; 0000-0003-3329-022X ; 0000-0002-3866-5310 ; 0000-0003-1755-4184 ; 0000-0001-8316-1747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31097667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smaligo, Andrew J.</creatorcontrib><creatorcontrib>Swain, Manisha</creatorcontrib><creatorcontrib>Quintana, Jason C.</creatorcontrib><creatorcontrib>Tan, Mikayla F.</creatorcontrib><creatorcontrib>Kim, Danielle A.</creatorcontrib><creatorcontrib>Kwon, Ohyun</creatorcontrib><title>Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Chemical synthesis typically relies on reactions that generate complexity through elaboration of simple starting materials. Less common are deconstructive strategies toward complexity—particularly those involving carbon-carbon bond scission. Here, we introduce one such transformation: the hydrodealkenylative cleavage of C(sp³)–C(sp²) bonds, conducted below room temperature, using ozone, an iron salt, and a hydrogen atom donor. These reactions are performed in nonanhydrous solvents and open to the air; reach completion within 30 minutes; and deliver their products in high yields, even on decagram scales. We have used this broadly functionality tolerant transformation to produce desirable synthetic intermediates, many of which are optically active, from abundantly available terpenes and terpenoid-derived precursors. We have also applied it in the formal total syntheses of complex molecules.</description><subject>Alkenes</subject><subject>Carbon</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Cleavage</subject><subject>Complexity</subject><subject>Fine chemicals</subject><subject>Intermediates</subject><subject>Iron</subject><subject>Optical activity</subject><subject>Organic chemistry</subject><subject>Oxidizing agents</subject><subject>Ozone</subject><subject>Precursors</subject><subject>Terpenes</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU1OwzAQhS0EoqWwZgWqxKZdpPW_kw0SqoAiVWLD3nIcp6SkcbGTou64AzeBG3AUToKhpQIW1lh637yZ0QPgGMEBQpgPvS5Mpc1AqSeKEd4BbQQTFiUYkl3QhpDwKIaCtcCB9zMIg5aQfdAigRKcizaIx6vM2cyo8sFUq1LVxdJ0Rz2_eH_rfzy_fP9e-93UVlk3d2o6N1UdIFsdgr1cld4cbWoH3F1d3o3G0eT2-mZ0MYk0o7yOUpFTESOdKUaVSBkVWQphLGKT6CQlXKsYYq0VghQrQSAxmBFKU4gZ0nlMOuB8bbto0rnJdBjvVCkXrpgrt5JWFfKvUhX3cmqXknPMOKPBoLcxcPaxMb6W88JrU5aqMrbxEmOCIUsSKgJ69g-d2cZV4bpA4Tg8InighmtKO-u9M_l2GQTlVyhyE4rchBI6Tn_fsOV_UgjAyRqY-dq6rY45p2EvRD4BTBaVqg</recordid><startdate>20190517</startdate><enddate>20190517</enddate><creator>Smaligo, Andrew J.</creator><creator>Swain, Manisha</creator><creator>Quintana, Jason C.</creator><creator>Tan, Mikayla F.</creator><creator>Kim, Danielle A.</creator><creator>Kwon, Ohyun</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5405-3971</orcidid><orcidid>https://orcid.org/0000-0003-0372-2618</orcidid><orcidid>https://orcid.org/0000-0003-3329-022X</orcidid><orcidid>https://orcid.org/0000-0002-3866-5310</orcidid><orcidid>https://orcid.org/0000-0003-1755-4184</orcidid><orcidid>https://orcid.org/0000-0001-8316-1747</orcidid></search><sort><creationdate>20190517</creationdate><title>Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation</title><author>Smaligo, Andrew J. ; Swain, Manisha ; Quintana, Jason C. ; Tan, Mikayla F. ; Kim, Danielle A. ; Kwon, Ohyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-b7f4781cda54a7b547db00878e9c9b36ca802cca1042a7303e25344b0251cf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkenes</topic><topic>Carbon</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Cleavage</topic><topic>Complexity</topic><topic>Fine chemicals</topic><topic>Intermediates</topic><topic>Iron</topic><topic>Optical activity</topic><topic>Organic chemistry</topic><topic>Oxidizing agents</topic><topic>Ozone</topic><topic>Precursors</topic><topic>Terpenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smaligo, Andrew J.</creatorcontrib><creatorcontrib>Swain, Manisha</creatorcontrib><creatorcontrib>Quintana, Jason C.</creatorcontrib><creatorcontrib>Tan, Mikayla F.</creatorcontrib><creatorcontrib>Kim, Danielle A.</creatorcontrib><creatorcontrib>Kwon, Ohyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smaligo, Andrew J.</au><au>Swain, Manisha</au><au>Quintana, Jason C.</au><au>Tan, Mikayla F.</au><au>Kim, Danielle A.</au><au>Kwon, Ohyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-05-17</date><risdate>2019</risdate><volume>364</volume><issue>6441</issue><spage>681</spage><epage>685</epage><pages>681-685</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Chemical synthesis typically relies on reactions that generate complexity through elaboration of simple starting materials. Less common are deconstructive strategies toward complexity—particularly those involving carbon-carbon bond scission. Here, we introduce one such transformation: the hydrodealkenylative cleavage of C(sp³)–C(sp²) bonds, conducted below room temperature, using ozone, an iron salt, and a hydrogen atom donor. These reactions are performed in nonanhydrous solvents and open to the air; reach completion within 30 minutes; and deliver their products in high yields, even on decagram scales. We have used this broadly functionality tolerant transformation to produce desirable synthetic intermediates, many of which are optically active, from abundantly available terpenes and terpenoid-derived precursors. We have also applied it in the formal total syntheses of complex molecules.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31097667</pmid><doi>10.1126/science.aaw4212</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5405-3971</orcidid><orcidid>https://orcid.org/0000-0003-0372-2618</orcidid><orcidid>https://orcid.org/0000-0003-3329-022X</orcidid><orcidid>https://orcid.org/0000-0002-3866-5310</orcidid><orcidid>https://orcid.org/0000-0003-1755-4184</orcidid><orcidid>https://orcid.org/0000-0001-8316-1747</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6441), p.681-685
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6625654
source American Association for the Advancement of Science
subjects Alkenes
Carbon
Chemical reactions
Chemical synthesis
Chemistry
Cleavage
Complexity
Fine chemicals
Intermediates
Iron
Optical activity
Organic chemistry
Oxidizing agents
Ozone
Precursors
Terpenes
title Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodealkenylative%20C(sp%C2%B3)%E2%80%93C(sp%C2%B2)%20bond%20fragmentation&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Smaligo,%20Andrew%20J.&rft.date=2019-05-17&rft.volume=364&rft.issue=6441&rft.spage=681&rft.epage=685&rft.pages=681-685&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaw4212&rft_dat=%3Cjstor_pubme%3E26649471%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228222376&rft_id=info:pmid/31097667&rft_jstor_id=26649471&rfr_iscdi=true