Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation
Chemical synthesis typically relies on reactions that generate complexity through elaboration of simple starting materials. Less common are deconstructive strategies toward complexity—particularly those involving carbon-carbon bond scission. Here, we introduce one such transformation: the hydrodealk...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2019-05, Vol.364 (6441), p.681-685 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 685 |
---|---|
container_issue | 6441 |
container_start_page | 681 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 364 |
creator | Smaligo, Andrew J. Swain, Manisha Quintana, Jason C. Tan, Mikayla F. Kim, Danielle A. Kwon, Ohyun |
description | Chemical synthesis typically relies on reactions that generate complexity through elaboration of simple starting materials. Less common are deconstructive strategies toward complexity—particularly those involving carbon-carbon bond scission. Here, we introduce one such transformation: the hydrodealkenylative cleavage of C(sp³)–C(sp²) bonds, conducted below room temperature, using ozone, an iron salt, and a hydrogen atom donor. These reactions are performed in nonanhydrous solvents and open to the air; reach completion within 30 minutes; and deliver their products in high yields, even on decagram scales. We have used this broadly functionality tolerant transformation to produce desirable synthetic intermediates, many of which are optically active, from abundantly available terpenes and terpenoid-derived precursors. We have also applied it in the formal total syntheses of complex molecules. |
doi_str_mv | 10.1126/science.aaw4212 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6625654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26649471</jstor_id><sourcerecordid>26649471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-b7f4781cda54a7b547db00878e9c9b36ca802cca1042a7303e25344b0251cf83</originalsourceid><addsrcrecordid>eNpdkU1OwzAQhS0EoqWwZgWqxKZdpPW_kw0SqoAiVWLD3nIcp6SkcbGTou64AzeBG3AUToKhpQIW1lh637yZ0QPgGMEBQpgPvS5Mpc1AqSeKEd4BbQQTFiUYkl3QhpDwKIaCtcCB9zMIg5aQfdAigRKcizaIx6vM2cyo8sFUq1LVxdJ0Rz2_eH_rfzy_fP9e-93UVlk3d2o6N1UdIFsdgr1cld4cbWoH3F1d3o3G0eT2-mZ0MYk0o7yOUpFTESOdKUaVSBkVWQphLGKT6CQlXKsYYq0VghQrQSAxmBFKU4gZ0nlMOuB8bbto0rnJdBjvVCkXrpgrt5JWFfKvUhX3cmqXknPMOKPBoLcxcPaxMb6W88JrU5aqMrbxEmOCIUsSKgJ69g-d2cZV4bpA4Tg8InighmtKO-u9M_l2GQTlVyhyE4rchBI6Tn_fsOV_UgjAyRqY-dq6rY45p2EvRD4BTBaVqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228222376</pqid></control><display><type>article</type><title>Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation</title><source>American Association for the Advancement of Science</source><creator>Smaligo, Andrew J. ; Swain, Manisha ; Quintana, Jason C. ; Tan, Mikayla F. ; Kim, Danielle A. ; Kwon, Ohyun</creator><creatorcontrib>Smaligo, Andrew J. ; Swain, Manisha ; Quintana, Jason C. ; Tan, Mikayla F. ; Kim, Danielle A. ; Kwon, Ohyun</creatorcontrib><description>Chemical synthesis typically relies on reactions that generate complexity through elaboration of simple starting materials. Less common are deconstructive strategies toward complexity—particularly those involving carbon-carbon bond scission. Here, we introduce one such transformation: the hydrodealkenylative cleavage of C(sp³)–C(sp²) bonds, conducted below room temperature, using ozone, an iron salt, and a hydrogen atom donor. These reactions are performed in nonanhydrous solvents and open to the air; reach completion within 30 minutes; and deliver their products in high yields, even on decagram scales. We have used this broadly functionality tolerant transformation to produce desirable synthetic intermediates, many of which are optically active, from abundantly available terpenes and terpenoid-derived precursors. We have also applied it in the formal total syntheses of complex molecules.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaw4212</identifier><identifier>PMID: 31097667</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Alkenes ; Carbon ; Chemical reactions ; Chemical synthesis ; Chemistry ; Cleavage ; Complexity ; Fine chemicals ; Intermediates ; Iron ; Optical activity ; Organic chemistry ; Oxidizing agents ; Ozone ; Precursors ; Terpenes</subject><ispartof>Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6441), p.681-685</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-b7f4781cda54a7b547db00878e9c9b36ca802cca1042a7303e25344b0251cf83</citedby><cites>FETCH-LOGICAL-c546t-b7f4781cda54a7b547db00878e9c9b36ca802cca1042a7303e25344b0251cf83</cites><orcidid>0000-0002-5405-3971 ; 0000-0003-0372-2618 ; 0000-0003-3329-022X ; 0000-0002-3866-5310 ; 0000-0003-1755-4184 ; 0000-0001-8316-1747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31097667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smaligo, Andrew J.</creatorcontrib><creatorcontrib>Swain, Manisha</creatorcontrib><creatorcontrib>Quintana, Jason C.</creatorcontrib><creatorcontrib>Tan, Mikayla F.</creatorcontrib><creatorcontrib>Kim, Danielle A.</creatorcontrib><creatorcontrib>Kwon, Ohyun</creatorcontrib><title>Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Chemical synthesis typically relies on reactions that generate complexity through elaboration of simple starting materials. Less common are deconstructive strategies toward complexity—particularly those involving carbon-carbon bond scission. Here, we introduce one such transformation: the hydrodealkenylative cleavage of C(sp³)–C(sp²) bonds, conducted below room temperature, using ozone, an iron salt, and a hydrogen atom donor. These reactions are performed in nonanhydrous solvents and open to the air; reach completion within 30 minutes; and deliver their products in high yields, even on decagram scales. We have used this broadly functionality tolerant transformation to produce desirable synthetic intermediates, many of which are optically active, from abundantly available terpenes and terpenoid-derived precursors. We have also applied it in the formal total syntheses of complex molecules.</description><subject>Alkenes</subject><subject>Carbon</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Cleavage</subject><subject>Complexity</subject><subject>Fine chemicals</subject><subject>Intermediates</subject><subject>Iron</subject><subject>Optical activity</subject><subject>Organic chemistry</subject><subject>Oxidizing agents</subject><subject>Ozone</subject><subject>Precursors</subject><subject>Terpenes</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU1OwzAQhS0EoqWwZgWqxKZdpPW_kw0SqoAiVWLD3nIcp6SkcbGTou64AzeBG3AUToKhpQIW1lh637yZ0QPgGMEBQpgPvS5Mpc1AqSeKEd4BbQQTFiUYkl3QhpDwKIaCtcCB9zMIg5aQfdAigRKcizaIx6vM2cyo8sFUq1LVxdJ0Rz2_eH_rfzy_fP9e-93UVlk3d2o6N1UdIFsdgr1cld4cbWoH3F1d3o3G0eT2-mZ0MYk0o7yOUpFTESOdKUaVSBkVWQphLGKT6CQlXKsYYq0VghQrQSAxmBFKU4gZ0nlMOuB8bbto0rnJdBjvVCkXrpgrt5JWFfKvUhX3cmqXknPMOKPBoLcxcPaxMb6W88JrU5aqMrbxEmOCIUsSKgJ69g-d2cZV4bpA4Tg8InighmtKO-u9M_l2GQTlVyhyE4rchBI6Tn_fsOV_UgjAyRqY-dq6rY45p2EvRD4BTBaVqg</recordid><startdate>20190517</startdate><enddate>20190517</enddate><creator>Smaligo, Andrew J.</creator><creator>Swain, Manisha</creator><creator>Quintana, Jason C.</creator><creator>Tan, Mikayla F.</creator><creator>Kim, Danielle A.</creator><creator>Kwon, Ohyun</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5405-3971</orcidid><orcidid>https://orcid.org/0000-0003-0372-2618</orcidid><orcidid>https://orcid.org/0000-0003-3329-022X</orcidid><orcidid>https://orcid.org/0000-0002-3866-5310</orcidid><orcidid>https://orcid.org/0000-0003-1755-4184</orcidid><orcidid>https://orcid.org/0000-0001-8316-1747</orcidid></search><sort><creationdate>20190517</creationdate><title>Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation</title><author>Smaligo, Andrew J. ; Swain, Manisha ; Quintana, Jason C. ; Tan, Mikayla F. ; Kim, Danielle A. ; Kwon, Ohyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-b7f4781cda54a7b547db00878e9c9b36ca802cca1042a7303e25344b0251cf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkenes</topic><topic>Carbon</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Cleavage</topic><topic>Complexity</topic><topic>Fine chemicals</topic><topic>Intermediates</topic><topic>Iron</topic><topic>Optical activity</topic><topic>Organic chemistry</topic><topic>Oxidizing agents</topic><topic>Ozone</topic><topic>Precursors</topic><topic>Terpenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smaligo, Andrew J.</creatorcontrib><creatorcontrib>Swain, Manisha</creatorcontrib><creatorcontrib>Quintana, Jason C.</creatorcontrib><creatorcontrib>Tan, Mikayla F.</creatorcontrib><creatorcontrib>Kim, Danielle A.</creatorcontrib><creatorcontrib>Kwon, Ohyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smaligo, Andrew J.</au><au>Swain, Manisha</au><au>Quintana, Jason C.</au><au>Tan, Mikayla F.</au><au>Kim, Danielle A.</au><au>Kwon, Ohyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-05-17</date><risdate>2019</risdate><volume>364</volume><issue>6441</issue><spage>681</spage><epage>685</epage><pages>681-685</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Chemical synthesis typically relies on reactions that generate complexity through elaboration of simple starting materials. Less common are deconstructive strategies toward complexity—particularly those involving carbon-carbon bond scission. Here, we introduce one such transformation: the hydrodealkenylative cleavage of C(sp³)–C(sp²) bonds, conducted below room temperature, using ozone, an iron salt, and a hydrogen atom donor. These reactions are performed in nonanhydrous solvents and open to the air; reach completion within 30 minutes; and deliver their products in high yields, even on decagram scales. We have used this broadly functionality tolerant transformation to produce desirable synthetic intermediates, many of which are optically active, from abundantly available terpenes and terpenoid-derived precursors. We have also applied it in the formal total syntheses of complex molecules.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31097667</pmid><doi>10.1126/science.aaw4212</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5405-3971</orcidid><orcidid>https://orcid.org/0000-0003-0372-2618</orcidid><orcidid>https://orcid.org/0000-0003-3329-022X</orcidid><orcidid>https://orcid.org/0000-0002-3866-5310</orcidid><orcidid>https://orcid.org/0000-0003-1755-4184</orcidid><orcidid>https://orcid.org/0000-0001-8316-1747</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6441), p.681-685 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6625654 |
source | American Association for the Advancement of Science |
subjects | Alkenes Carbon Chemical reactions Chemical synthesis Chemistry Cleavage Complexity Fine chemicals Intermediates Iron Optical activity Organic chemistry Oxidizing agents Ozone Precursors Terpenes |
title | Hydrodealkenylative C(sp³)–C(sp²) bond fragmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodealkenylative%20C(sp%C2%B3)%E2%80%93C(sp%C2%B2)%20bond%20fragmentation&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Smaligo,%20Andrew%20J.&rft.date=2019-05-17&rft.volume=364&rft.issue=6441&rft.spage=681&rft.epage=685&rft.pages=681-685&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaw4212&rft_dat=%3Cjstor_pubme%3E26649471%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228222376&rft_id=info:pmid/31097667&rft_jstor_id=26649471&rfr_iscdi=true |