Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation

Vezatin is an integral membrane protein associated with cell-cell adhesion complex and actin cytoskeleton. It is expressed in the developing and mature mammalian brain, but its neuronal function is unknown. Here, we show that Vezatin localizes in spines in mature mouse hippocampal neurons and codist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2012-06, Vol.32 (26), p.9007-9022
Hauptverfasser: Danglot, Lydia, Freret, Thomas, Le Roux, Nicolas, Narboux Nême, Nicolas, Burgo, Andrea, Hyenne, Vincent, Roumier, Anne, Contremoulins, Vincent, Dauphin, François, Bizot, Jean-Charles, Vodjdani, Guilan, Gaspar, Patricia, Boulouard, Michel, Poncer, Jean-Christophe, Galli, Thierry, Simmler, Marie-Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9022
container_issue 26
container_start_page 9007
container_title The Journal of neuroscience
container_volume 32
creator Danglot, Lydia
Freret, Thomas
Le Roux, Nicolas
Narboux Nême, Nicolas
Burgo, Andrea
Hyenne, Vincent
Roumier, Anne
Contremoulins, Vincent
Dauphin, François
Bizot, Jean-Charles
Vodjdani, Guilan
Gaspar, Patricia
Boulouard, Michel
Poncer, Jean-Christophe
Galli, Thierry
Simmler, Marie-Christine
description Vezatin is an integral membrane protein associated with cell-cell adhesion complex and actin cytoskeleton. It is expressed in the developing and mature mammalian brain, but its neuronal function is unknown. Here, we show that Vezatin localizes in spines in mature mouse hippocampal neurons and codistributes with PSD95, a major scaffolding protein of the excitatory postsynaptic density. Forebrain-specific conditional ablation of Vezatin induced anxiety-like behavior and impaired cued fear-conditioning memory response. Vezatin knock-down in cultured hippocampal neurons and Vezatin conditional knock-out in mice led to a significantly increased proportion of stubby spines and a reduced proportion of mature dendritic spines. PSD95 remained tethered to presynaptic terminals in Vezatin-deficient hippocampal neurons, suggesting that the reduced expression of Vezatin does not compromise the maintenance of synaptic connections. Accordingly, neither the amplitude nor the frequency of miniature EPSCs was affected in Vezatin-deficient hippocampal neurons. However, the AMPA/NMDA ratio of evoked EPSCs was reduced, suggesting impaired functional maturation of excitatory synapses. These results suggest a role of Vezatin in dendritic spine morphogenesis and functional synaptic maturation.
doi_str_mv 10.1523/JNEUROSCI.3084-11.2012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6622322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1035531135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-365ed23564a7be927de53edd0c222909fa5363fcd37d325397e55a822cca6de73</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVISbbb_IXgY3PwRh-WtL4UwpJPlgTaptCTUKRxVsGWXMkOJL--MpsuTS-FgYGZ553R6EXomOAF4ZSd3tye33-9-7a6XjC8rEpCFhQTuodmuVuXtMJkH80wlbgUlawO0ceUnjDGEhN5gA4plRXnGM_Qzx_wqgfnC5cKSAn84HRbNCEWFryNbnCmSL3zUHQh9pvwCB5SZrW3RTN6M7jgsyC9eN1PbKeHMeqp-gl9aHSb4Ogtz9H9xfn31VW5vru8Xp2tS1MtyVAywcFSxkWl5QPUVFrgDKzFhlJa47rRnAnWGMukZZSzWgLnekmpMVpYkGyOvmzn9uNDB9bkE6JuVR9dp-OLCtqp9x3vNuoxPCshKGU55uhkO2Dzj-zqbK2mWv42KVgtnklmP78ti-HXCGlQnUsG2lZ7CGNShHMiSF2J5f9RzDhnhDCeUbFFTQwpRWh2zyBYTXarnd1qslsRoia7s_D479t3sj_-st-7X6iE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035531135</pqid></control><display><type>article</type><title>Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Danglot, Lydia ; Freret, Thomas ; Le Roux, Nicolas ; Narboux Nême, Nicolas ; Burgo, Andrea ; Hyenne, Vincent ; Roumier, Anne ; Contremoulins, Vincent ; Dauphin, François ; Bizot, Jean-Charles ; Vodjdani, Guilan ; Gaspar, Patricia ; Boulouard, Michel ; Poncer, Jean-Christophe ; Galli, Thierry ; Simmler, Marie-Christine</creator><creatorcontrib>Danglot, Lydia ; Freret, Thomas ; Le Roux, Nicolas ; Narboux Nême, Nicolas ; Burgo, Andrea ; Hyenne, Vincent ; Roumier, Anne ; Contremoulins, Vincent ; Dauphin, François ; Bizot, Jean-Charles ; Vodjdani, Guilan ; Gaspar, Patricia ; Boulouard, Michel ; Poncer, Jean-Christophe ; Galli, Thierry ; Simmler, Marie-Christine</creatorcontrib><description>Vezatin is an integral membrane protein associated with cell-cell adhesion complex and actin cytoskeleton. It is expressed in the developing and mature mammalian brain, but its neuronal function is unknown. Here, we show that Vezatin localizes in spines in mature mouse hippocampal neurons and codistributes with PSD95, a major scaffolding protein of the excitatory postsynaptic density. Forebrain-specific conditional ablation of Vezatin induced anxiety-like behavior and impaired cued fear-conditioning memory response. Vezatin knock-down in cultured hippocampal neurons and Vezatin conditional knock-out in mice led to a significantly increased proportion of stubby spines and a reduced proportion of mature dendritic spines. PSD95 remained tethered to presynaptic terminals in Vezatin-deficient hippocampal neurons, suggesting that the reduced expression of Vezatin does not compromise the maintenance of synaptic connections. Accordingly, neither the amplitude nor the frequency of miniature EPSCs was affected in Vezatin-deficient hippocampal neurons. However, the AMPA/NMDA ratio of evoked EPSCs was reduced, suggesting impaired functional maturation of excitatory synapses. These results suggest a role of Vezatin in dendritic spine morphogenesis and functional synaptic maturation.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3084-11.2012</identifier><identifier>PMID: 22745500</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism ; Animals ; Animals, Newborn ; Anxiety ; Anxiety - genetics ; Avoidance Learning ; Avoidance Learning - physiology ; Cadherins ; Cadherins - metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics ; Carrier Proteins ; Carrier Proteins - metabolism ; Cells, Cultured ; Conditioning (Psychology) ; Conditioning (Psychology) - physiology ; Dendritic Spines ; Dendritic Spines - physiology ; Electric Stimulation ; Embryo, Mammalian ; Excitatory Postsynaptic Potentials ; Excitatory Postsynaptic Potentials - genetics ; Excitatory Postsynaptic Potentials - physiology ; Exploratory Behavior ; Exploratory Behavior - physiology ; Eye Proteins ; Eye Proteins - genetics ; Fear ; Fear - physiology ; Gene Expression Regulation ; Gene Expression Regulation - genetics ; Glutamate Decarboxylase ; Glutamate Decarboxylase - metabolism ; Green Fluorescent Proteins ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Hippocampus ; Hippocampus - cytology ; In Vitro Techniques ; Life Sciences ; Male ; Maze Learning ; Maze Learning - physiology ; Membrane Proteins ; Membrane Proteins - deficiency ; Membrane Proteins - metabolism ; Memory ; Memory - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microscopy, Confocal ; Microtubule-Associated Proteins ; Microtubule-Associated Proteins - metabolism ; N-Methylaspartate ; N-Methylaspartate - metabolism ; Nerve Tissue Proteins ; Nerve Tissue Proteins - metabolism ; Neurogenesis ; Neurogenesis - genetics ; Neurogenesis - physiology ; Neurons ; Neurons - ultrastructure ; Neurons and Cognition ; Receptors, AMPA ; Receptors, AMPA - genetics ; Receptors, AMPA - metabolism ; RNA, Messenger ; Silver Staining ; Statistics, Nonparametric ; Synapses ; Synapses - genetics ; Synapses - physiology ; Synaptosomes ; Synaptosomes - metabolism ; Transfection ; Vesicle-Associated Membrane Protein 2 ; Vesicle-Associated Membrane Protein 2 - metabolism</subject><ispartof>The Journal of neuroscience, 2012-06, Vol.32 (26), p.9007-9022</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2012 the authors 0270-6474/12/329007-16$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-365ed23564a7be927de53edd0c222909fa5363fcd37d325397e55a822cca6de73</citedby><orcidid>0000-0001-6257-1536 ; 0000-0002-4446-4451 ; 0000-0003-4217-5717 ; 0000-0001-8514-7455 ; 0000-0002-3791-7459 ; 0000-0002-0916-5536 ; 0000-0002-0270-5448 ; 0000-0001-6190-6605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622322/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622322/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22745500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00776396$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Danglot, Lydia</creatorcontrib><creatorcontrib>Freret, Thomas</creatorcontrib><creatorcontrib>Le Roux, Nicolas</creatorcontrib><creatorcontrib>Narboux Nême, Nicolas</creatorcontrib><creatorcontrib>Burgo, Andrea</creatorcontrib><creatorcontrib>Hyenne, Vincent</creatorcontrib><creatorcontrib>Roumier, Anne</creatorcontrib><creatorcontrib>Contremoulins, Vincent</creatorcontrib><creatorcontrib>Dauphin, François</creatorcontrib><creatorcontrib>Bizot, Jean-Charles</creatorcontrib><creatorcontrib>Vodjdani, Guilan</creatorcontrib><creatorcontrib>Gaspar, Patricia</creatorcontrib><creatorcontrib>Boulouard, Michel</creatorcontrib><creatorcontrib>Poncer, Jean-Christophe</creatorcontrib><creatorcontrib>Galli, Thierry</creatorcontrib><creatorcontrib>Simmler, Marie-Christine</creatorcontrib><title>Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Vezatin is an integral membrane protein associated with cell-cell adhesion complex and actin cytoskeleton. It is expressed in the developing and mature mammalian brain, but its neuronal function is unknown. Here, we show that Vezatin localizes in spines in mature mouse hippocampal neurons and codistributes with PSD95, a major scaffolding protein of the excitatory postsynaptic density. Forebrain-specific conditional ablation of Vezatin induced anxiety-like behavior and impaired cued fear-conditioning memory response. Vezatin knock-down in cultured hippocampal neurons and Vezatin conditional knock-out in mice led to a significantly increased proportion of stubby spines and a reduced proportion of mature dendritic spines. PSD95 remained tethered to presynaptic terminals in Vezatin-deficient hippocampal neurons, suggesting that the reduced expression of Vezatin does not compromise the maintenance of synaptic connections. Accordingly, neither the amplitude nor the frequency of miniature EPSCs was affected in Vezatin-deficient hippocampal neurons. However, the AMPA/NMDA ratio of evoked EPSCs was reduced, suggesting impaired functional maturation of excitatory synapses. These results suggest a role of Vezatin in dendritic spine morphogenesis and functional synaptic maturation.</description><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid</subject><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Anxiety</subject><subject>Anxiety - genetics</subject><subject>Avoidance Learning</subject><subject>Avoidance Learning - physiology</subject><subject>Cadherins</subject><subject>Cadherins - metabolism</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics</subject><subject>Carrier Proteins</subject><subject>Carrier Proteins - metabolism</subject><subject>Cells, Cultured</subject><subject>Conditioning (Psychology)</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Dendritic Spines</subject><subject>Dendritic Spines - physiology</subject><subject>Electric Stimulation</subject><subject>Embryo, Mammalian</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>Excitatory Postsynaptic Potentials - genetics</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Exploratory Behavior</subject><subject>Exploratory Behavior - physiology</subject><subject>Eye Proteins</subject><subject>Eye Proteins - genetics</subject><subject>Fear</subject><subject>Fear - physiology</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation - genetics</subject><subject>Glutamate Decarboxylase</subject><subject>Glutamate Decarboxylase - metabolism</subject><subject>Green Fluorescent Proteins</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>In Vitro Techniques</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Maze Learning</subject><subject>Maze Learning - physiology</subject><subject>Membrane Proteins</subject><subject>Membrane Proteins - deficiency</subject><subject>Membrane Proteins - metabolism</subject><subject>Memory</subject><subject>Memory - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Confocal</subject><subject>Microtubule-Associated Proteins</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>N-Methylaspartate</subject><subject>N-Methylaspartate - metabolism</subject><subject>Nerve Tissue Proteins</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurogenesis</subject><subject>Neurogenesis - genetics</subject><subject>Neurogenesis - physiology</subject><subject>Neurons</subject><subject>Neurons - ultrastructure</subject><subject>Neurons and Cognition</subject><subject>Receptors, AMPA</subject><subject>Receptors, AMPA - genetics</subject><subject>Receptors, AMPA - metabolism</subject><subject>RNA, Messenger</subject><subject>Silver Staining</subject><subject>Statistics, Nonparametric</subject><subject>Synapses</subject><subject>Synapses - genetics</subject><subject>Synapses - physiology</subject><subject>Synaptosomes</subject><subject>Synaptosomes - metabolism</subject><subject>Transfection</subject><subject>Vesicle-Associated Membrane Protein 2</subject><subject>Vesicle-Associated Membrane Protein 2 - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVISbbb_IXgY3PwRh-WtL4UwpJPlgTaptCTUKRxVsGWXMkOJL--MpsuTS-FgYGZ553R6EXomOAF4ZSd3tye33-9-7a6XjC8rEpCFhQTuodmuVuXtMJkH80wlbgUlawO0ceUnjDGEhN5gA4plRXnGM_Qzx_wqgfnC5cKSAn84HRbNCEWFryNbnCmSL3zUHQh9pvwCB5SZrW3RTN6M7jgsyC9eN1PbKeHMeqp-gl9aHSb4Ogtz9H9xfn31VW5vru8Xp2tS1MtyVAywcFSxkWl5QPUVFrgDKzFhlJa47rRnAnWGMukZZSzWgLnekmpMVpYkGyOvmzn9uNDB9bkE6JuVR9dp-OLCtqp9x3vNuoxPCshKGU55uhkO2Dzj-zqbK2mWv42KVgtnklmP78ti-HXCGlQnUsG2lZ7CGNShHMiSF2J5f9RzDhnhDCeUbFFTQwpRWh2zyBYTXarnd1qslsRoia7s_D479t3sj_-st-7X6iE</recordid><startdate>20120627</startdate><enddate>20120627</enddate><creator>Danglot, Lydia</creator><creator>Freret, Thomas</creator><creator>Le Roux, Nicolas</creator><creator>Narboux Nême, Nicolas</creator><creator>Burgo, Andrea</creator><creator>Hyenne, Vincent</creator><creator>Roumier, Anne</creator><creator>Contremoulins, Vincent</creator><creator>Dauphin, François</creator><creator>Bizot, Jean-Charles</creator><creator>Vodjdani, Guilan</creator><creator>Gaspar, Patricia</creator><creator>Boulouard, Michel</creator><creator>Poncer, Jean-Christophe</creator><creator>Galli, Thierry</creator><creator>Simmler, Marie-Christine</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6257-1536</orcidid><orcidid>https://orcid.org/0000-0002-4446-4451</orcidid><orcidid>https://orcid.org/0000-0003-4217-5717</orcidid><orcidid>https://orcid.org/0000-0001-8514-7455</orcidid><orcidid>https://orcid.org/0000-0002-3791-7459</orcidid><orcidid>https://orcid.org/0000-0002-0916-5536</orcidid><orcidid>https://orcid.org/0000-0002-0270-5448</orcidid><orcidid>https://orcid.org/0000-0001-6190-6605</orcidid></search><sort><creationdate>20120627</creationdate><title>Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation</title><author>Danglot, Lydia ; Freret, Thomas ; Le Roux, Nicolas ; Narboux Nême, Nicolas ; Burgo, Andrea ; Hyenne, Vincent ; Roumier, Anne ; Contremoulins, Vincent ; Dauphin, François ; Bizot, Jean-Charles ; Vodjdani, Guilan ; Gaspar, Patricia ; Boulouard, Michel ; Poncer, Jean-Christophe ; Galli, Thierry ; Simmler, Marie-Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-365ed23564a7be927de53edd0c222909fa5363fcd37d325397e55a822cca6de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid</topic><topic>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Anxiety</topic><topic>Anxiety - genetics</topic><topic>Avoidance Learning</topic><topic>Avoidance Learning - physiology</topic><topic>Cadherins</topic><topic>Cadherins - metabolism</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics</topic><topic>Carrier Proteins</topic><topic>Carrier Proteins - metabolism</topic><topic>Cells, Cultured</topic><topic>Conditioning (Psychology)</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Dendritic Spines</topic><topic>Dendritic Spines - physiology</topic><topic>Electric Stimulation</topic><topic>Embryo, Mammalian</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>Excitatory Postsynaptic Potentials - genetics</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Exploratory Behavior</topic><topic>Exploratory Behavior - physiology</topic><topic>Eye Proteins</topic><topic>Eye Proteins - genetics</topic><topic>Fear</topic><topic>Fear - physiology</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation - genetics</topic><topic>Glutamate Decarboxylase</topic><topic>Glutamate Decarboxylase - metabolism</topic><topic>Green Fluorescent Proteins</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>In Vitro Techniques</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Maze Learning</topic><topic>Maze Learning - physiology</topic><topic>Membrane Proteins</topic><topic>Membrane Proteins - deficiency</topic><topic>Membrane Proteins - metabolism</topic><topic>Memory</topic><topic>Memory - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Confocal</topic><topic>Microtubule-Associated Proteins</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>N-Methylaspartate</topic><topic>N-Methylaspartate - metabolism</topic><topic>Nerve Tissue Proteins</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurogenesis</topic><topic>Neurogenesis - genetics</topic><topic>Neurogenesis - physiology</topic><topic>Neurons</topic><topic>Neurons - ultrastructure</topic><topic>Neurons and Cognition</topic><topic>Receptors, AMPA</topic><topic>Receptors, AMPA - genetics</topic><topic>Receptors, AMPA - metabolism</topic><topic>RNA, Messenger</topic><topic>Silver Staining</topic><topic>Statistics, Nonparametric</topic><topic>Synapses</topic><topic>Synapses - genetics</topic><topic>Synapses - physiology</topic><topic>Synaptosomes</topic><topic>Synaptosomes - metabolism</topic><topic>Transfection</topic><topic>Vesicle-Associated Membrane Protein 2</topic><topic>Vesicle-Associated Membrane Protein 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danglot, Lydia</creatorcontrib><creatorcontrib>Freret, Thomas</creatorcontrib><creatorcontrib>Le Roux, Nicolas</creatorcontrib><creatorcontrib>Narboux Nême, Nicolas</creatorcontrib><creatorcontrib>Burgo, Andrea</creatorcontrib><creatorcontrib>Hyenne, Vincent</creatorcontrib><creatorcontrib>Roumier, Anne</creatorcontrib><creatorcontrib>Contremoulins, Vincent</creatorcontrib><creatorcontrib>Dauphin, François</creatorcontrib><creatorcontrib>Bizot, Jean-Charles</creatorcontrib><creatorcontrib>Vodjdani, Guilan</creatorcontrib><creatorcontrib>Gaspar, Patricia</creatorcontrib><creatorcontrib>Boulouard, Michel</creatorcontrib><creatorcontrib>Poncer, Jean-Christophe</creatorcontrib><creatorcontrib>Galli, Thierry</creatorcontrib><creatorcontrib>Simmler, Marie-Christine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danglot, Lydia</au><au>Freret, Thomas</au><au>Le Roux, Nicolas</au><au>Narboux Nême, Nicolas</au><au>Burgo, Andrea</au><au>Hyenne, Vincent</au><au>Roumier, Anne</au><au>Contremoulins, Vincent</au><au>Dauphin, François</au><au>Bizot, Jean-Charles</au><au>Vodjdani, Guilan</au><au>Gaspar, Patricia</au><au>Boulouard, Michel</au><au>Poncer, Jean-Christophe</au><au>Galli, Thierry</au><au>Simmler, Marie-Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-06-27</date><risdate>2012</risdate><volume>32</volume><issue>26</issue><spage>9007</spage><epage>9022</epage><pages>9007-9022</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Vezatin is an integral membrane protein associated with cell-cell adhesion complex and actin cytoskeleton. It is expressed in the developing and mature mammalian brain, but its neuronal function is unknown. Here, we show that Vezatin localizes in spines in mature mouse hippocampal neurons and codistributes with PSD95, a major scaffolding protein of the excitatory postsynaptic density. Forebrain-specific conditional ablation of Vezatin induced anxiety-like behavior and impaired cued fear-conditioning memory response. Vezatin knock-down in cultured hippocampal neurons and Vezatin conditional knock-out in mice led to a significantly increased proportion of stubby spines and a reduced proportion of mature dendritic spines. PSD95 remained tethered to presynaptic terminals in Vezatin-deficient hippocampal neurons, suggesting that the reduced expression of Vezatin does not compromise the maintenance of synaptic connections. Accordingly, neither the amplitude nor the frequency of miniature EPSCs was affected in Vezatin-deficient hippocampal neurons. However, the AMPA/NMDA ratio of evoked EPSCs was reduced, suggesting impaired functional maturation of excitatory synapses. These results suggest a role of Vezatin in dendritic spine morphogenesis and functional synaptic maturation.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>22745500</pmid><doi>10.1523/JNEUROSCI.3084-11.2012</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6257-1536</orcidid><orcidid>https://orcid.org/0000-0002-4446-4451</orcidid><orcidid>https://orcid.org/0000-0003-4217-5717</orcidid><orcidid>https://orcid.org/0000-0001-8514-7455</orcidid><orcidid>https://orcid.org/0000-0002-3791-7459</orcidid><orcidid>https://orcid.org/0000-0002-0916-5536</orcidid><orcidid>https://orcid.org/0000-0002-0270-5448</orcidid><orcidid>https://orcid.org/0000-0001-6190-6605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2012-06, Vol.32 (26), p.9007-9022
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6622322
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism
Animals
Animals, Newborn
Anxiety
Anxiety - genetics
Avoidance Learning
Avoidance Learning - physiology
Cadherins
Cadherins - metabolism
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics
Carrier Proteins
Carrier Proteins - metabolism
Cells, Cultured
Conditioning (Psychology)
Conditioning (Psychology) - physiology
Dendritic Spines
Dendritic Spines - physiology
Electric Stimulation
Embryo, Mammalian
Excitatory Postsynaptic Potentials
Excitatory Postsynaptic Potentials - genetics
Excitatory Postsynaptic Potentials - physiology
Exploratory Behavior
Exploratory Behavior - physiology
Eye Proteins
Eye Proteins - genetics
Fear
Fear - physiology
Gene Expression Regulation
Gene Expression Regulation - genetics
Glutamate Decarboxylase
Glutamate Decarboxylase - metabolism
Green Fluorescent Proteins
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Hippocampus
Hippocampus - cytology
In Vitro Techniques
Life Sciences
Male
Maze Learning
Maze Learning - physiology
Membrane Proteins
Membrane Proteins - deficiency
Membrane Proteins - metabolism
Memory
Memory - physiology
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microscopy, Confocal
Microtubule-Associated Proteins
Microtubule-Associated Proteins - metabolism
N-Methylaspartate
N-Methylaspartate - metabolism
Nerve Tissue Proteins
Nerve Tissue Proteins - metabolism
Neurogenesis
Neurogenesis - genetics
Neurogenesis - physiology
Neurons
Neurons - ultrastructure
Neurons and Cognition
Receptors, AMPA
Receptors, AMPA - genetics
Receptors, AMPA - metabolism
RNA, Messenger
Silver Staining
Statistics, Nonparametric
Synapses
Synapses - genetics
Synapses - physiology
Synaptosomes
Synaptosomes - metabolism
Transfection
Vesicle-Associated Membrane Protein 2
Vesicle-Associated Membrane Protein 2 - metabolism
title Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vezatin%20is%20essential%20for%20dendritic%20spine%20morphogenesis%20and%20functional%20synaptic%20maturation&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Danglot,%20Lydia&rft.date=2012-06-27&rft.volume=32&rft.issue=26&rft.spage=9007&rft.epage=9022&rft.pages=9007-9022&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3084-11.2012&rft_dat=%3Cproquest_pubme%3E1035531135%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035531135&rft_id=info:pmid/22745500&rfr_iscdi=true