Striatal indirect pathway contributes to selection accuracy of learned motor actions

The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2012-09, Vol.32 (39), p.13421-13432
Hauptverfasser: Nishizawa, Kayo, Fukabori, Ryoji, Okada, Kana, Kai, Nobuyuki, Uchigashima, Motokazu, Watanabe, Masahiko, Shiota, Akira, Ueda, Masatsugu, Tsutsui, Yuji, Kobayashi, Kazuto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13432
container_issue 39
container_start_page 13421
container_title The Journal of neuroscience
container_volume 32
creator Nishizawa, Kayo
Fukabori, Ryoji
Okada, Kana
Kai, Nobuyuki
Uchigashima, Motokazu
Watanabe, Masahiko
Shiota, Akira
Ueda, Masatsugu
Tsutsui, Yuji
Kobayashi, Kazuto
description The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and indirect pathways. The mechanism by which these pathways mediate the learning processes of instrumental actions remains unclear. We investigated how the striatal indirect (striatopallidal) pathway arising from the DLS contributes to the performance of conditional discrimination. Immunotoxin targeting of the striatal neuronal type containing dopamine D(2) receptor in the DLS of transgenic rats resulted in selective, efficient elimination of the striatopallidal pathway. This elimination impaired the accuracy of response selection in a two-choice reaction time task dependent on different auditory stimuli. The impaired response selection was elicited early in the test sessions and was gradually restored as the sessions continued. The restoration from the deficits in auditory discrimination was prevented by excitotoxic lesion of the NAc but not by that of the DMS. In addition, lesion of the DLS mimicked the behavioral consequence of the striatopallidal removal at the early stage of test sessions of discriminative performance. Our results demonstrate that the DLS-derived striatopallidal pathway plays an essential role in the execution of conditional discrimination, showing its contribution to the control of selection accuracy of learned motor responses. The results also suggest the presence of a mechanism that compensates for the learning deficits during the repetitive sessions, at least partly, demanding accumbal function.
doi_str_mv 10.1523/jneurosci.1969-12.2012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6621362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1220366824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-1831ab4b1cd8d8231b648f7718be796ff4f56d4cf8bad7e13226265334268f843</originalsourceid><addsrcrecordid>eNqFkU9P3DAUxK2qqCzQr4B87CWLn-3Y3kulagVlKwQSf86W49jFKBtvbYdqvz2OoKg99fQOv5nRPA1Cp0CW0FJ29jS6KcVswxJWYtUAXVIC9ANaVLpqKCfwES0IlaQRXPJDdJTzEyFEEpCf0CFlBFrO2ALd35UUTDEDDmMfkrMF70x5_G322Maxsm4qLuMScXZDpSGO2Fg7JWP3OHo8OJNG1-NtLDFVMgvyCTrwZsju89s9Rg8X5_fry-bq5vtm_e2qsS2w0oBiYDrege1VryiDTnDlpQTVObkS3nPfip5brzrTSweMUkFFyxinQnnF2TH6-pq7m7qt662rhc2gdylsTdrraIL-l4zhUf-Mz1oICkzQGvDlLSDFX5PLRW9Dtm4YzOjilDW0LQhoGZf_l1JKmBCKzrXEq9TWhXJy_r0RED2vp39cnz_c3tytN3per3r1vF41nv79z7vtz1zsBbiBmVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220366824</pqid></control><display><type>article</type><title>Striatal indirect pathway contributes to selection accuracy of learned motor actions</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nishizawa, Kayo ; Fukabori, Ryoji ; Okada, Kana ; Kai, Nobuyuki ; Uchigashima, Motokazu ; Watanabe, Masahiko ; Shiota, Akira ; Ueda, Masatsugu ; Tsutsui, Yuji ; Kobayashi, Kazuto</creator><creatorcontrib>Nishizawa, Kayo ; Fukabori, Ryoji ; Okada, Kana ; Kai, Nobuyuki ; Uchigashima, Motokazu ; Watanabe, Masahiko ; Shiota, Akira ; Ueda, Masatsugu ; Tsutsui, Yuji ; Kobayashi, Kazuto</creatorcontrib><description>The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and indirect pathways. The mechanism by which these pathways mediate the learning processes of instrumental actions remains unclear. We investigated how the striatal indirect (striatopallidal) pathway arising from the DLS contributes to the performance of conditional discrimination. Immunotoxin targeting of the striatal neuronal type containing dopamine D(2) receptor in the DLS of transgenic rats resulted in selective, efficient elimination of the striatopallidal pathway. This elimination impaired the accuracy of response selection in a two-choice reaction time task dependent on different auditory stimuli. The impaired response selection was elicited early in the test sessions and was gradually restored as the sessions continued. The restoration from the deficits in auditory discrimination was prevented by excitotoxic lesion of the NAc but not by that of the DMS. In addition, lesion of the DLS mimicked the behavioral consequence of the striatopallidal removal at the early stage of test sessions of discriminative performance. Our results demonstrate that the DLS-derived striatopallidal pathway plays an essential role in the execution of conditional discrimination, showing its contribution to the control of selection accuracy of learned motor responses. The results also suggest the presence of a mechanism that compensates for the learning deficits during the repetitive sessions, at least partly, demanding accumbal function.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.1969-12.2012</identifier><identifier>PMID: 23015433</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Acoustic Stimulation ; Analysis of Variance ; Animals ; Animals, Genetically Modified ; Biotin - analogs &amp; derivatives ; Calbindin 2 ; Choice Behavior - drug effects ; Choice Behavior - physiology ; Choline O-Acetyltransferase - metabolism ; Conditioning, Operant - drug effects ; Conditioning, Operant - physiology ; Corpus Striatum - cytology ; Corpus Striatum - injuries ; Corpus Striatum - physiology ; Dextrans ; Discrimination, Psychological - physiology ; Dopaminergic Neurons - drug effects ; Enkephalins - genetics ; Enkephalins - metabolism ; Female ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - genetics ; Ibotenic Acid - toxicity ; Immunotoxins - toxicity ; Interneurons - metabolism ; Male ; Motivation - drug effects ; Motivation - genetics ; Motor Activity - physiology ; Parvalbumins - metabolism ; Phosphopyruvate Hydratase - metabolism ; Protein Precursors - genetics ; Protein Precursors - metabolism ; Rats ; Rats, Long-Evans ; Reaction Time - drug effects ; Reaction Time - genetics ; Receptors, Dopamine D2 - deficiency ; Receptors, Dopamine D2 - metabolism ; Receptors, Interleukin-2 - genetics ; Reinforcement Schedule ; S100 Calcium Binding Protein G - metabolism ; Substantia Nigra - metabolism ; Tachykinins - genetics ; Tachykinins - metabolism ; Tyrosine 3-Monooxygenase - metabolism ; Ventral Tegmental Area - metabolism</subject><ispartof>The Journal of neuroscience, 2012-09, Vol.32 (39), p.13421-13432</ispartof><rights>Copyright © 2012 the authors 0270-6474/12/3213421-12$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-1831ab4b1cd8d8231b648f7718be796ff4f56d4cf8bad7e13226265334268f843</citedby><cites>FETCH-LOGICAL-c513t-1831ab4b1cd8d8231b648f7718be796ff4f56d4cf8bad7e13226265334268f843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621362/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621362/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23015433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishizawa, Kayo</creatorcontrib><creatorcontrib>Fukabori, Ryoji</creatorcontrib><creatorcontrib>Okada, Kana</creatorcontrib><creatorcontrib>Kai, Nobuyuki</creatorcontrib><creatorcontrib>Uchigashima, Motokazu</creatorcontrib><creatorcontrib>Watanabe, Masahiko</creatorcontrib><creatorcontrib>Shiota, Akira</creatorcontrib><creatorcontrib>Ueda, Masatsugu</creatorcontrib><creatorcontrib>Tsutsui, Yuji</creatorcontrib><creatorcontrib>Kobayashi, Kazuto</creatorcontrib><title>Striatal indirect pathway contributes to selection accuracy of learned motor actions</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and indirect pathways. The mechanism by which these pathways mediate the learning processes of instrumental actions remains unclear. We investigated how the striatal indirect (striatopallidal) pathway arising from the DLS contributes to the performance of conditional discrimination. Immunotoxin targeting of the striatal neuronal type containing dopamine D(2) receptor in the DLS of transgenic rats resulted in selective, efficient elimination of the striatopallidal pathway. This elimination impaired the accuracy of response selection in a two-choice reaction time task dependent on different auditory stimuli. The impaired response selection was elicited early in the test sessions and was gradually restored as the sessions continued. The restoration from the deficits in auditory discrimination was prevented by excitotoxic lesion of the NAc but not by that of the DMS. In addition, lesion of the DLS mimicked the behavioral consequence of the striatopallidal removal at the early stage of test sessions of discriminative performance. Our results demonstrate that the DLS-derived striatopallidal pathway plays an essential role in the execution of conditional discrimination, showing its contribution to the control of selection accuracy of learned motor responses. The results also suggest the presence of a mechanism that compensates for the learning deficits during the repetitive sessions, at least partly, demanding accumbal function.</description><subject>Acoustic Stimulation</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biotin - analogs &amp; derivatives</subject><subject>Calbindin 2</subject><subject>Choice Behavior - drug effects</subject><subject>Choice Behavior - physiology</subject><subject>Choline O-Acetyltransferase - metabolism</subject><subject>Conditioning, Operant - drug effects</subject><subject>Conditioning, Operant - physiology</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - injuries</subject><subject>Corpus Striatum - physiology</subject><subject>Dextrans</subject><subject>Discrimination, Psychological - physiology</subject><subject>Dopaminergic Neurons - drug effects</subject><subject>Enkephalins - genetics</subject><subject>Enkephalins - metabolism</subject><subject>Female</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - genetics</subject><subject>Ibotenic Acid - toxicity</subject><subject>Immunotoxins - toxicity</subject><subject>Interneurons - metabolism</subject><subject>Male</subject><subject>Motivation - drug effects</subject><subject>Motivation - genetics</subject><subject>Motor Activity - physiology</subject><subject>Parvalbumins - metabolism</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Protein Precursors - genetics</subject><subject>Protein Precursors - metabolism</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Reaction Time - drug effects</subject><subject>Reaction Time - genetics</subject><subject>Receptors, Dopamine D2 - deficiency</subject><subject>Receptors, Dopamine D2 - metabolism</subject><subject>Receptors, Interleukin-2 - genetics</subject><subject>Reinforcement Schedule</subject><subject>S100 Calcium Binding Protein G - metabolism</subject><subject>Substantia Nigra - metabolism</subject><subject>Tachykinins - genetics</subject><subject>Tachykinins - metabolism</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><subject>Ventral Tegmental Area - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9P3DAUxK2qqCzQr4B87CWLn-3Y3kulagVlKwQSf86W49jFKBtvbYdqvz2OoKg99fQOv5nRPA1Cp0CW0FJ29jS6KcVswxJWYtUAXVIC9ANaVLpqKCfwES0IlaQRXPJDdJTzEyFEEpCf0CFlBFrO2ALd35UUTDEDDmMfkrMF70x5_G322Maxsm4qLuMScXZDpSGO2Fg7JWP3OHo8OJNG1-NtLDFVMgvyCTrwZsju89s9Rg8X5_fry-bq5vtm_e2qsS2w0oBiYDrege1VryiDTnDlpQTVObkS3nPfip5brzrTSweMUkFFyxinQnnF2TH6-pq7m7qt662rhc2gdylsTdrraIL-l4zhUf-Mz1oICkzQGvDlLSDFX5PLRW9Dtm4YzOjilDW0LQhoGZf_l1JKmBCKzrXEq9TWhXJy_r0RED2vp39cnz_c3tytN3per3r1vF41nv79z7vtz1zsBbiBmVg</recordid><startdate>20120926</startdate><enddate>20120926</enddate><creator>Nishizawa, Kayo</creator><creator>Fukabori, Ryoji</creator><creator>Okada, Kana</creator><creator>Kai, Nobuyuki</creator><creator>Uchigashima, Motokazu</creator><creator>Watanabe, Masahiko</creator><creator>Shiota, Akira</creator><creator>Ueda, Masatsugu</creator><creator>Tsutsui, Yuji</creator><creator>Kobayashi, Kazuto</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20120926</creationdate><title>Striatal indirect pathway contributes to selection accuracy of learned motor actions</title><author>Nishizawa, Kayo ; Fukabori, Ryoji ; Okada, Kana ; Kai, Nobuyuki ; Uchigashima, Motokazu ; Watanabe, Masahiko ; Shiota, Akira ; Ueda, Masatsugu ; Tsutsui, Yuji ; Kobayashi, Kazuto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-1831ab4b1cd8d8231b648f7718be796ff4f56d4cf8bad7e13226265334268f843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic Stimulation</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biotin - analogs &amp; derivatives</topic><topic>Calbindin 2</topic><topic>Choice Behavior - drug effects</topic><topic>Choice Behavior - physiology</topic><topic>Choline O-Acetyltransferase - metabolism</topic><topic>Conditioning, Operant - drug effects</topic><topic>Conditioning, Operant - physiology</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - injuries</topic><topic>Corpus Striatum - physiology</topic><topic>Dextrans</topic><topic>Discrimination, Psychological - physiology</topic><topic>Dopaminergic Neurons - drug effects</topic><topic>Enkephalins - genetics</topic><topic>Enkephalins - metabolism</topic><topic>Female</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - genetics</topic><topic>Ibotenic Acid - toxicity</topic><topic>Immunotoxins - toxicity</topic><topic>Interneurons - metabolism</topic><topic>Male</topic><topic>Motivation - drug effects</topic><topic>Motivation - genetics</topic><topic>Motor Activity - physiology</topic><topic>Parvalbumins - metabolism</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Protein Precursors - genetics</topic><topic>Protein Precursors - metabolism</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Reaction Time - drug effects</topic><topic>Reaction Time - genetics</topic><topic>Receptors, Dopamine D2 - deficiency</topic><topic>Receptors, Dopamine D2 - metabolism</topic><topic>Receptors, Interleukin-2 - genetics</topic><topic>Reinforcement Schedule</topic><topic>S100 Calcium Binding Protein G - metabolism</topic><topic>Substantia Nigra - metabolism</topic><topic>Tachykinins - genetics</topic><topic>Tachykinins - metabolism</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><topic>Ventral Tegmental Area - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishizawa, Kayo</creatorcontrib><creatorcontrib>Fukabori, Ryoji</creatorcontrib><creatorcontrib>Okada, Kana</creatorcontrib><creatorcontrib>Kai, Nobuyuki</creatorcontrib><creatorcontrib>Uchigashima, Motokazu</creatorcontrib><creatorcontrib>Watanabe, Masahiko</creatorcontrib><creatorcontrib>Shiota, Akira</creatorcontrib><creatorcontrib>Ueda, Masatsugu</creatorcontrib><creatorcontrib>Tsutsui, Yuji</creatorcontrib><creatorcontrib>Kobayashi, Kazuto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishizawa, Kayo</au><au>Fukabori, Ryoji</au><au>Okada, Kana</au><au>Kai, Nobuyuki</au><au>Uchigashima, Motokazu</au><au>Watanabe, Masahiko</au><au>Shiota, Akira</au><au>Ueda, Masatsugu</au><au>Tsutsui, Yuji</au><au>Kobayashi, Kazuto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Striatal indirect pathway contributes to selection accuracy of learned motor actions</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-09-26</date><risdate>2012</risdate><volume>32</volume><issue>39</issue><spage>13421</spage><epage>13432</epage><pages>13421-13432</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and indirect pathways. The mechanism by which these pathways mediate the learning processes of instrumental actions remains unclear. We investigated how the striatal indirect (striatopallidal) pathway arising from the DLS contributes to the performance of conditional discrimination. Immunotoxin targeting of the striatal neuronal type containing dopamine D(2) receptor in the DLS of transgenic rats resulted in selective, efficient elimination of the striatopallidal pathway. This elimination impaired the accuracy of response selection in a two-choice reaction time task dependent on different auditory stimuli. The impaired response selection was elicited early in the test sessions and was gradually restored as the sessions continued. The restoration from the deficits in auditory discrimination was prevented by excitotoxic lesion of the NAc but not by that of the DMS. In addition, lesion of the DLS mimicked the behavioral consequence of the striatopallidal removal at the early stage of test sessions of discriminative performance. Our results demonstrate that the DLS-derived striatopallidal pathway plays an essential role in the execution of conditional discrimination, showing its contribution to the control of selection accuracy of learned motor responses. The results also suggest the presence of a mechanism that compensates for the learning deficits during the repetitive sessions, at least partly, demanding accumbal function.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>23015433</pmid><doi>10.1523/jneurosci.1969-12.2012</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2012-09, Vol.32 (39), p.13421-13432
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6621362
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Acoustic Stimulation
Analysis of Variance
Animals
Animals, Genetically Modified
Biotin - analogs & derivatives
Calbindin 2
Choice Behavior - drug effects
Choice Behavior - physiology
Choline O-Acetyltransferase - metabolism
Conditioning, Operant - drug effects
Conditioning, Operant - physiology
Corpus Striatum - cytology
Corpus Striatum - injuries
Corpus Striatum - physiology
Dextrans
Discrimination, Psychological - physiology
Dopaminergic Neurons - drug effects
Enkephalins - genetics
Enkephalins - metabolism
Female
Gene Expression Regulation - drug effects
Gene Expression Regulation - genetics
Ibotenic Acid - toxicity
Immunotoxins - toxicity
Interneurons - metabolism
Male
Motivation - drug effects
Motivation - genetics
Motor Activity - physiology
Parvalbumins - metabolism
Phosphopyruvate Hydratase - metabolism
Protein Precursors - genetics
Protein Precursors - metabolism
Rats
Rats, Long-Evans
Reaction Time - drug effects
Reaction Time - genetics
Receptors, Dopamine D2 - deficiency
Receptors, Dopamine D2 - metabolism
Receptors, Interleukin-2 - genetics
Reinforcement Schedule
S100 Calcium Binding Protein G - metabolism
Substantia Nigra - metabolism
Tachykinins - genetics
Tachykinins - metabolism
Tyrosine 3-Monooxygenase - metabolism
Ventral Tegmental Area - metabolism
title Striatal indirect pathway contributes to selection accuracy of learned motor actions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Striatal%20indirect%20pathway%20contributes%20to%20selection%20accuracy%20of%20learned%20motor%20actions&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Nishizawa,%20Kayo&rft.date=2012-09-26&rft.volume=32&rft.issue=39&rft.spage=13421&rft.epage=13432&rft.pages=13421-13432&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.1969-12.2012&rft_dat=%3Cproquest_pubme%3E1220366824%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220366824&rft_id=info:pmid/23015433&rfr_iscdi=true