Striatal indirect pathway contributes to selection accuracy of learned motor actions
The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and ind...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2012-09, Vol.32 (39), p.13421-13432 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13432 |
---|---|
container_issue | 39 |
container_start_page | 13421 |
container_title | The Journal of neuroscience |
container_volume | 32 |
creator | Nishizawa, Kayo Fukabori, Ryoji Okada, Kana Kai, Nobuyuki Uchigashima, Motokazu Watanabe, Masahiko Shiota, Akira Ueda, Masatsugu Tsutsui, Yuji Kobayashi, Kazuto |
description | The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and indirect pathways. The mechanism by which these pathways mediate the learning processes of instrumental actions remains unclear. We investigated how the striatal indirect (striatopallidal) pathway arising from the DLS contributes to the performance of conditional discrimination. Immunotoxin targeting of the striatal neuronal type containing dopamine D(2) receptor in the DLS of transgenic rats resulted in selective, efficient elimination of the striatopallidal pathway. This elimination impaired the accuracy of response selection in a two-choice reaction time task dependent on different auditory stimuli. The impaired response selection was elicited early in the test sessions and was gradually restored as the sessions continued. The restoration from the deficits in auditory discrimination was prevented by excitotoxic lesion of the NAc but not by that of the DMS. In addition, lesion of the DLS mimicked the behavioral consequence of the striatopallidal removal at the early stage of test sessions of discriminative performance. Our results demonstrate that the DLS-derived striatopallidal pathway plays an essential role in the execution of conditional discrimination, showing its contribution to the control of selection accuracy of learned motor responses. The results also suggest the presence of a mechanism that compensates for the learning deficits during the repetitive sessions, at least partly, demanding accumbal function. |
doi_str_mv | 10.1523/jneurosci.1969-12.2012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6621362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1220366824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-1831ab4b1cd8d8231b648f7718be796ff4f56d4cf8bad7e13226265334268f843</originalsourceid><addsrcrecordid>eNqFkU9P3DAUxK2qqCzQr4B87CWLn-3Y3kulagVlKwQSf86W49jFKBtvbYdqvz2OoKg99fQOv5nRPA1Cp0CW0FJ29jS6KcVswxJWYtUAXVIC9ANaVLpqKCfwES0IlaQRXPJDdJTzEyFEEpCf0CFlBFrO2ALd35UUTDEDDmMfkrMF70x5_G322Maxsm4qLuMScXZDpSGO2Fg7JWP3OHo8OJNG1-NtLDFVMgvyCTrwZsju89s9Rg8X5_fry-bq5vtm_e2qsS2w0oBiYDrege1VryiDTnDlpQTVObkS3nPfip5brzrTSweMUkFFyxinQnnF2TH6-pq7m7qt662rhc2gdylsTdrraIL-l4zhUf-Mz1oICkzQGvDlLSDFX5PLRW9Dtm4YzOjilDW0LQhoGZf_l1JKmBCKzrXEq9TWhXJy_r0RED2vp39cnz_c3tytN3per3r1vF41nv79z7vtz1zsBbiBmVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220366824</pqid></control><display><type>article</type><title>Striatal indirect pathway contributes to selection accuracy of learned motor actions</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nishizawa, Kayo ; Fukabori, Ryoji ; Okada, Kana ; Kai, Nobuyuki ; Uchigashima, Motokazu ; Watanabe, Masahiko ; Shiota, Akira ; Ueda, Masatsugu ; Tsutsui, Yuji ; Kobayashi, Kazuto</creator><creatorcontrib>Nishizawa, Kayo ; Fukabori, Ryoji ; Okada, Kana ; Kai, Nobuyuki ; Uchigashima, Motokazu ; Watanabe, Masahiko ; Shiota, Akira ; Ueda, Masatsugu ; Tsutsui, Yuji ; Kobayashi, Kazuto</creatorcontrib><description>The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and indirect pathways. The mechanism by which these pathways mediate the learning processes of instrumental actions remains unclear. We investigated how the striatal indirect (striatopallidal) pathway arising from the DLS contributes to the performance of conditional discrimination. Immunotoxin targeting of the striatal neuronal type containing dopamine D(2) receptor in the DLS of transgenic rats resulted in selective, efficient elimination of the striatopallidal pathway. This elimination impaired the accuracy of response selection in a two-choice reaction time task dependent on different auditory stimuli. The impaired response selection was elicited early in the test sessions and was gradually restored as the sessions continued. The restoration from the deficits in auditory discrimination was prevented by excitotoxic lesion of the NAc but not by that of the DMS. In addition, lesion of the DLS mimicked the behavioral consequence of the striatopallidal removal at the early stage of test sessions of discriminative performance. Our results demonstrate that the DLS-derived striatopallidal pathway plays an essential role in the execution of conditional discrimination, showing its contribution to the control of selection accuracy of learned motor responses. The results also suggest the presence of a mechanism that compensates for the learning deficits during the repetitive sessions, at least partly, demanding accumbal function.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.1969-12.2012</identifier><identifier>PMID: 23015433</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Acoustic Stimulation ; Analysis of Variance ; Animals ; Animals, Genetically Modified ; Biotin - analogs & derivatives ; Calbindin 2 ; Choice Behavior - drug effects ; Choice Behavior - physiology ; Choline O-Acetyltransferase - metabolism ; Conditioning, Operant - drug effects ; Conditioning, Operant - physiology ; Corpus Striatum - cytology ; Corpus Striatum - injuries ; Corpus Striatum - physiology ; Dextrans ; Discrimination, Psychological - physiology ; Dopaminergic Neurons - drug effects ; Enkephalins - genetics ; Enkephalins - metabolism ; Female ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - genetics ; Ibotenic Acid - toxicity ; Immunotoxins - toxicity ; Interneurons - metabolism ; Male ; Motivation - drug effects ; Motivation - genetics ; Motor Activity - physiology ; Parvalbumins - metabolism ; Phosphopyruvate Hydratase - metabolism ; Protein Precursors - genetics ; Protein Precursors - metabolism ; Rats ; Rats, Long-Evans ; Reaction Time - drug effects ; Reaction Time - genetics ; Receptors, Dopamine D2 - deficiency ; Receptors, Dopamine D2 - metabolism ; Receptors, Interleukin-2 - genetics ; Reinforcement Schedule ; S100 Calcium Binding Protein G - metabolism ; Substantia Nigra - metabolism ; Tachykinins - genetics ; Tachykinins - metabolism ; Tyrosine 3-Monooxygenase - metabolism ; Ventral Tegmental Area - metabolism</subject><ispartof>The Journal of neuroscience, 2012-09, Vol.32 (39), p.13421-13432</ispartof><rights>Copyright © 2012 the authors 0270-6474/12/3213421-12$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-1831ab4b1cd8d8231b648f7718be796ff4f56d4cf8bad7e13226265334268f843</citedby><cites>FETCH-LOGICAL-c513t-1831ab4b1cd8d8231b648f7718be796ff4f56d4cf8bad7e13226265334268f843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621362/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621362/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23015433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishizawa, Kayo</creatorcontrib><creatorcontrib>Fukabori, Ryoji</creatorcontrib><creatorcontrib>Okada, Kana</creatorcontrib><creatorcontrib>Kai, Nobuyuki</creatorcontrib><creatorcontrib>Uchigashima, Motokazu</creatorcontrib><creatorcontrib>Watanabe, Masahiko</creatorcontrib><creatorcontrib>Shiota, Akira</creatorcontrib><creatorcontrib>Ueda, Masatsugu</creatorcontrib><creatorcontrib>Tsutsui, Yuji</creatorcontrib><creatorcontrib>Kobayashi, Kazuto</creatorcontrib><title>Striatal indirect pathway contributes to selection accuracy of learned motor actions</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and indirect pathways. The mechanism by which these pathways mediate the learning processes of instrumental actions remains unclear. We investigated how the striatal indirect (striatopallidal) pathway arising from the DLS contributes to the performance of conditional discrimination. Immunotoxin targeting of the striatal neuronal type containing dopamine D(2) receptor in the DLS of transgenic rats resulted in selective, efficient elimination of the striatopallidal pathway. This elimination impaired the accuracy of response selection in a two-choice reaction time task dependent on different auditory stimuli. The impaired response selection was elicited early in the test sessions and was gradually restored as the sessions continued. The restoration from the deficits in auditory discrimination was prevented by excitotoxic lesion of the NAc but not by that of the DMS. In addition, lesion of the DLS mimicked the behavioral consequence of the striatopallidal removal at the early stage of test sessions of discriminative performance. Our results demonstrate that the DLS-derived striatopallidal pathway plays an essential role in the execution of conditional discrimination, showing its contribution to the control of selection accuracy of learned motor responses. The results also suggest the presence of a mechanism that compensates for the learning deficits during the repetitive sessions, at least partly, demanding accumbal function.</description><subject>Acoustic Stimulation</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biotin - analogs & derivatives</subject><subject>Calbindin 2</subject><subject>Choice Behavior - drug effects</subject><subject>Choice Behavior - physiology</subject><subject>Choline O-Acetyltransferase - metabolism</subject><subject>Conditioning, Operant - drug effects</subject><subject>Conditioning, Operant - physiology</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - injuries</subject><subject>Corpus Striatum - physiology</subject><subject>Dextrans</subject><subject>Discrimination, Psychological - physiology</subject><subject>Dopaminergic Neurons - drug effects</subject><subject>Enkephalins - genetics</subject><subject>Enkephalins - metabolism</subject><subject>Female</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - genetics</subject><subject>Ibotenic Acid - toxicity</subject><subject>Immunotoxins - toxicity</subject><subject>Interneurons - metabolism</subject><subject>Male</subject><subject>Motivation - drug effects</subject><subject>Motivation - genetics</subject><subject>Motor Activity - physiology</subject><subject>Parvalbumins - metabolism</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Protein Precursors - genetics</subject><subject>Protein Precursors - metabolism</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Reaction Time - drug effects</subject><subject>Reaction Time - genetics</subject><subject>Receptors, Dopamine D2 - deficiency</subject><subject>Receptors, Dopamine D2 - metabolism</subject><subject>Receptors, Interleukin-2 - genetics</subject><subject>Reinforcement Schedule</subject><subject>S100 Calcium Binding Protein G - metabolism</subject><subject>Substantia Nigra - metabolism</subject><subject>Tachykinins - genetics</subject><subject>Tachykinins - metabolism</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><subject>Ventral Tegmental Area - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9P3DAUxK2qqCzQr4B87CWLn-3Y3kulagVlKwQSf86W49jFKBtvbYdqvz2OoKg99fQOv5nRPA1Cp0CW0FJ29jS6KcVswxJWYtUAXVIC9ANaVLpqKCfwES0IlaQRXPJDdJTzEyFEEpCf0CFlBFrO2ALd35UUTDEDDmMfkrMF70x5_G322Maxsm4qLuMScXZDpSGO2Fg7JWP3OHo8OJNG1-NtLDFVMgvyCTrwZsju89s9Rg8X5_fry-bq5vtm_e2qsS2w0oBiYDrege1VryiDTnDlpQTVObkS3nPfip5brzrTSweMUkFFyxinQnnF2TH6-pq7m7qt662rhc2gdylsTdrraIL-l4zhUf-Mz1oICkzQGvDlLSDFX5PLRW9Dtm4YzOjilDW0LQhoGZf_l1JKmBCKzrXEq9TWhXJy_r0RED2vp39cnz_c3tytN3per3r1vF41nv79z7vtz1zsBbiBmVg</recordid><startdate>20120926</startdate><enddate>20120926</enddate><creator>Nishizawa, Kayo</creator><creator>Fukabori, Ryoji</creator><creator>Okada, Kana</creator><creator>Kai, Nobuyuki</creator><creator>Uchigashima, Motokazu</creator><creator>Watanabe, Masahiko</creator><creator>Shiota, Akira</creator><creator>Ueda, Masatsugu</creator><creator>Tsutsui, Yuji</creator><creator>Kobayashi, Kazuto</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20120926</creationdate><title>Striatal indirect pathway contributes to selection accuracy of learned motor actions</title><author>Nishizawa, Kayo ; Fukabori, Ryoji ; Okada, Kana ; Kai, Nobuyuki ; Uchigashima, Motokazu ; Watanabe, Masahiko ; Shiota, Akira ; Ueda, Masatsugu ; Tsutsui, Yuji ; Kobayashi, Kazuto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-1831ab4b1cd8d8231b648f7718be796ff4f56d4cf8bad7e13226265334268f843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic Stimulation</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biotin - analogs & derivatives</topic><topic>Calbindin 2</topic><topic>Choice Behavior - drug effects</topic><topic>Choice Behavior - physiology</topic><topic>Choline O-Acetyltransferase - metabolism</topic><topic>Conditioning, Operant - drug effects</topic><topic>Conditioning, Operant - physiology</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - injuries</topic><topic>Corpus Striatum - physiology</topic><topic>Dextrans</topic><topic>Discrimination, Psychological - physiology</topic><topic>Dopaminergic Neurons - drug effects</topic><topic>Enkephalins - genetics</topic><topic>Enkephalins - metabolism</topic><topic>Female</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - genetics</topic><topic>Ibotenic Acid - toxicity</topic><topic>Immunotoxins - toxicity</topic><topic>Interneurons - metabolism</topic><topic>Male</topic><topic>Motivation - drug effects</topic><topic>Motivation - genetics</topic><topic>Motor Activity - physiology</topic><topic>Parvalbumins - metabolism</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Protein Precursors - genetics</topic><topic>Protein Precursors - metabolism</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Reaction Time - drug effects</topic><topic>Reaction Time - genetics</topic><topic>Receptors, Dopamine D2 - deficiency</topic><topic>Receptors, Dopamine D2 - metabolism</topic><topic>Receptors, Interleukin-2 - genetics</topic><topic>Reinforcement Schedule</topic><topic>S100 Calcium Binding Protein G - metabolism</topic><topic>Substantia Nigra - metabolism</topic><topic>Tachykinins - genetics</topic><topic>Tachykinins - metabolism</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><topic>Ventral Tegmental Area - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishizawa, Kayo</creatorcontrib><creatorcontrib>Fukabori, Ryoji</creatorcontrib><creatorcontrib>Okada, Kana</creatorcontrib><creatorcontrib>Kai, Nobuyuki</creatorcontrib><creatorcontrib>Uchigashima, Motokazu</creatorcontrib><creatorcontrib>Watanabe, Masahiko</creatorcontrib><creatorcontrib>Shiota, Akira</creatorcontrib><creatorcontrib>Ueda, Masatsugu</creatorcontrib><creatorcontrib>Tsutsui, Yuji</creatorcontrib><creatorcontrib>Kobayashi, Kazuto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishizawa, Kayo</au><au>Fukabori, Ryoji</au><au>Okada, Kana</au><au>Kai, Nobuyuki</au><au>Uchigashima, Motokazu</au><au>Watanabe, Masahiko</au><au>Shiota, Akira</au><au>Ueda, Masatsugu</au><au>Tsutsui, Yuji</au><au>Kobayashi, Kazuto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Striatal indirect pathway contributes to selection accuracy of learned motor actions</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-09-26</date><risdate>2012</risdate><volume>32</volume><issue>39</issue><spage>13421</spage><epage>13432</epage><pages>13421-13432</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>The dorsal striatum, which contains the dorsolateral striatum (DLS) and dorsomedial striatum (DMS), integrates the acquisition and implementation of instrumental learning in cooperation with the nucleus accumbens (NAc). The dorsal striatum regulates the basal ganglia circuitry through direct and indirect pathways. The mechanism by which these pathways mediate the learning processes of instrumental actions remains unclear. We investigated how the striatal indirect (striatopallidal) pathway arising from the DLS contributes to the performance of conditional discrimination. Immunotoxin targeting of the striatal neuronal type containing dopamine D(2) receptor in the DLS of transgenic rats resulted in selective, efficient elimination of the striatopallidal pathway. This elimination impaired the accuracy of response selection in a two-choice reaction time task dependent on different auditory stimuli. The impaired response selection was elicited early in the test sessions and was gradually restored as the sessions continued. The restoration from the deficits in auditory discrimination was prevented by excitotoxic lesion of the NAc but not by that of the DMS. In addition, lesion of the DLS mimicked the behavioral consequence of the striatopallidal removal at the early stage of test sessions of discriminative performance. Our results demonstrate that the DLS-derived striatopallidal pathway plays an essential role in the execution of conditional discrimination, showing its contribution to the control of selection accuracy of learned motor responses. The results also suggest the presence of a mechanism that compensates for the learning deficits during the repetitive sessions, at least partly, demanding accumbal function.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>23015433</pmid><doi>10.1523/jneurosci.1969-12.2012</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2012-09, Vol.32 (39), p.13421-13432 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6621362 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Acoustic Stimulation Analysis of Variance Animals Animals, Genetically Modified Biotin - analogs & derivatives Calbindin 2 Choice Behavior - drug effects Choice Behavior - physiology Choline O-Acetyltransferase - metabolism Conditioning, Operant - drug effects Conditioning, Operant - physiology Corpus Striatum - cytology Corpus Striatum - injuries Corpus Striatum - physiology Dextrans Discrimination, Psychological - physiology Dopaminergic Neurons - drug effects Enkephalins - genetics Enkephalins - metabolism Female Gene Expression Regulation - drug effects Gene Expression Regulation - genetics Ibotenic Acid - toxicity Immunotoxins - toxicity Interneurons - metabolism Male Motivation - drug effects Motivation - genetics Motor Activity - physiology Parvalbumins - metabolism Phosphopyruvate Hydratase - metabolism Protein Precursors - genetics Protein Precursors - metabolism Rats Rats, Long-Evans Reaction Time - drug effects Reaction Time - genetics Receptors, Dopamine D2 - deficiency Receptors, Dopamine D2 - metabolism Receptors, Interleukin-2 - genetics Reinforcement Schedule S100 Calcium Binding Protein G - metabolism Substantia Nigra - metabolism Tachykinins - genetics Tachykinins - metabolism Tyrosine 3-Monooxygenase - metabolism Ventral Tegmental Area - metabolism |
title | Striatal indirect pathway contributes to selection accuracy of learned motor actions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Striatal%20indirect%20pathway%20contributes%20to%20selection%20accuracy%20of%20learned%20motor%20actions&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Nishizawa,%20Kayo&rft.date=2012-09-26&rft.volume=32&rft.issue=39&rft.spage=13421&rft.epage=13432&rft.pages=13421-13432&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.1969-12.2012&rft_dat=%3Cproquest_pubme%3E1220366824%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220366824&rft_id=info:pmid/23015433&rfr_iscdi=true |