Inhibition of jejunal protein synthesis and breakdown in Pseudomonas aeruginosa -induced sepsis pig model

Maintenance of gut integrity has long been recognized as crucial for survival in sepsis, but alterations in protein metabolism have not previously been documented. Therefore, in the present study, we measured in a -induced porcine sepsis model fractional protein synthesis (FSR) and breakdown rates (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: Gastrointestinal and liver physiology 2019-06, Vol.316 (6), p.G755-G762
Hauptverfasser: Ten Have, Gabriëlla A M, Engelen, Mariëlle P K J, Wolfe, Robert R, Deutz, Nicolaas E P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page G762
container_issue 6
container_start_page G755
container_title American journal of physiology: Gastrointestinal and liver physiology
container_volume 316
creator Ten Have, Gabriëlla A M
Engelen, Mariëlle P K J
Wolfe, Robert R
Deutz, Nicolaas E P
description Maintenance of gut integrity has long been recognized as crucial for survival in sepsis, but alterations in protein metabolism have not previously been documented. Therefore, in the present study, we measured in a -induced porcine sepsis model fractional protein synthesis (FSR) and breakdown rates (FBR) in jejunal mucosa in a fasted, conscious state. FSR was measured by the incorporation rate of stable tracer amino acid (l-[ - C ]phenylalanine) into tissue protein. FBR was determined using the relation between blood arterial enrichment and intracellular enrichment of phenylalanine in consecutive mucosal biopsies after a pulse of l-[ N]phenylalanine. Additionally, we determined the FSR in jejunum, ileum, liver, muscle, and lung tissue. We found in this sham-controlled acute sepsis pig model (control: = 9; sepsis: = 13) that jejunal mucosal protein turnover is reduced with both decreased FSR (control: 3.29 ± 0.22; sepsis: 2.32 ± 0.12%/h, = 0.0008) and FBR (control: 0.72 ± 0.12; sepsis: 0.34 ± 0.04%/h, = 0.006). We also found that FSR was unchanged in ileum and muscle, whereas it was higher in the liver (control: 0.87 ± 0.05; sepsis: 1.05 ± 0.06%/h, = 0.041). Our data, obtained with a translational acute sepsis model, suggest that jejunal mucosal protein metabolism is diminished in acute sepsis. Comparison with other tissues indicates that the most serious acute metabolic changes in sepsis occur in the jejunum rather than the muscle. In a highly translational acute sepsis model, presented data suggest that jejunal mucosal protein metabolism is diminished in acute sepsis, even if the origin of the sepsis is not located in the gut. Comparison with other tissues indicates that the most serious acute changes in the protein synthesis rates in sepsis occur in the gut rather than the muscle. Therefore, we hypothesize that preventing a compromised gut is critical to maintain gut function during sepsis.
doi_str_mv 10.1152/ajpgi.00407.2018
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6620581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209599618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-79f432642e3af61c653476a287afb5f7bf892af1510da5ba60bc6ef423eee96c3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EotuWOydkiQuXLB5_JbkgoQraSpXgQM-Wk4x3HRI7tZOi_vdk-6XCaSS_33ua8SPkPbAtgOKfbT_t_JYxycotZ1C9Ipv1mRegZPmabBjUooBKlUfkOOeeMaY4wFtyJFhdVgB8Q_xl2PvGzz4GGh3tsV-CHeiU4ow-0HwX5j1mn6kNHW0S2t9d_BPoKv3MuHRxjMGuIqZl50PMlhY-dEuLHc04HXyT39ExdjickjfODhnfPc4Tcv3926-zi-Lqx_nl2deropVczkVZOym4lhyFdRparYQsteVVaV2jXNm4qubWgQLWWdVYzZpWo5NcIGKtW3FCvjzkTkszYtdimJMdzJT8aNOdidabf5Xg92YXb43WnKkK1oBPjwEp3iyYZzP63OIw2IBxyYZzVqu61lCt6Mf_0D4uaf3AAyVBCFFJtVLsgWpTzDmhe14GmDn0aO57NPc9mkOPq-XDyyOeDU_Fib-e6Zxo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241333845</pqid></control><display><type>article</type><title>Inhibition of jejunal protein synthesis and breakdown in Pseudomonas aeruginosa -induced sepsis pig model</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Ten Have, Gabriëlla A M ; Engelen, Mariëlle P K J ; Wolfe, Robert R ; Deutz, Nicolaas E P</creator><creatorcontrib>Ten Have, Gabriëlla A M ; Engelen, Mariëlle P K J ; Wolfe, Robert R ; Deutz, Nicolaas E P</creatorcontrib><description>Maintenance of gut integrity has long been recognized as crucial for survival in sepsis, but alterations in protein metabolism have not previously been documented. Therefore, in the present study, we measured in a -induced porcine sepsis model fractional protein synthesis (FSR) and breakdown rates (FBR) in jejunal mucosa in a fasted, conscious state. FSR was measured by the incorporation rate of stable tracer amino acid (l-[ - C ]phenylalanine) into tissue protein. FBR was determined using the relation between blood arterial enrichment and intracellular enrichment of phenylalanine in consecutive mucosal biopsies after a pulse of l-[ N]phenylalanine. Additionally, we determined the FSR in jejunum, ileum, liver, muscle, and lung tissue. We found in this sham-controlled acute sepsis pig model (control: = 9; sepsis: = 13) that jejunal mucosal protein turnover is reduced with both decreased FSR (control: 3.29 ± 0.22; sepsis: 2.32 ± 0.12%/h, = 0.0008) and FBR (control: 0.72 ± 0.12; sepsis: 0.34 ± 0.04%/h, = 0.006). We also found that FSR was unchanged in ileum and muscle, whereas it was higher in the liver (control: 0.87 ± 0.05; sepsis: 1.05 ± 0.06%/h, = 0.041). Our data, obtained with a translational acute sepsis model, suggest that jejunal mucosal protein metabolism is diminished in acute sepsis. Comparison with other tissues indicates that the most serious acute metabolic changes in sepsis occur in the jejunum rather than the muscle. In a highly translational acute sepsis model, presented data suggest that jejunal mucosal protein metabolism is diminished in acute sepsis, even if the origin of the sepsis is not located in the gut. Comparison with other tissues indicates that the most serious acute changes in the protein synthesis rates in sepsis occur in the gut rather than the muscle. Therefore, we hypothesize that preventing a compromised gut is critical to maintain gut function during sepsis.</description><identifier>ISSN: 0193-1857</identifier><identifier>EISSN: 1522-1547</identifier><identifier>DOI: 10.1152/ajpgi.00407.2018</identifier><identifier>PMID: 30978112</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Amino acids ; Animals ; Consciousness ; Disease Models, Animal ; Ileum ; Intestinal Mucosa - metabolism ; Intestinal Mucosa - pathology ; Jejunum ; Jejunum - metabolism ; Jejunum - pathology ; Liver ; Liver - metabolism ; Liver - pathology ; Metabolism ; Mucosa ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Phenylalanine ; Phenylalanine - pharmacokinetics ; Protein Biosynthesis ; Protein synthesis ; Protein turnover ; Proteins ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - physiology ; Radioactive Tracers ; Sepsis ; Sepsis - metabolism ; Sepsis - microbiology ; Swine</subject><ispartof>American journal of physiology: Gastrointestinal and liver physiology, 2019-06, Vol.316 (6), p.G755-G762</ispartof><rights>Copyright American Physiological Society Jun 2019</rights><rights>Copyright © 2019 the American Physiological Society 2019 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-79f432642e3af61c653476a287afb5f7bf892af1510da5ba60bc6ef423eee96c3</citedby><cites>FETCH-LOGICAL-c424t-79f432642e3af61c653476a287afb5f7bf892af1510da5ba60bc6ef423eee96c3</cites><orcidid>0000-0001-5845-6447 ; 0000-0003-2617-1193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30978112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ten Have, Gabriëlla A M</creatorcontrib><creatorcontrib>Engelen, Mariëlle P K J</creatorcontrib><creatorcontrib>Wolfe, Robert R</creatorcontrib><creatorcontrib>Deutz, Nicolaas E P</creatorcontrib><title>Inhibition of jejunal protein synthesis and breakdown in Pseudomonas aeruginosa -induced sepsis pig model</title><title>American journal of physiology: Gastrointestinal and liver physiology</title><addtitle>Am J Physiol Gastrointest Liver Physiol</addtitle><description>Maintenance of gut integrity has long been recognized as crucial for survival in sepsis, but alterations in protein metabolism have not previously been documented. Therefore, in the present study, we measured in a -induced porcine sepsis model fractional protein synthesis (FSR) and breakdown rates (FBR) in jejunal mucosa in a fasted, conscious state. FSR was measured by the incorporation rate of stable tracer amino acid (l-[ - C ]phenylalanine) into tissue protein. FBR was determined using the relation between blood arterial enrichment and intracellular enrichment of phenylalanine in consecutive mucosal biopsies after a pulse of l-[ N]phenylalanine. Additionally, we determined the FSR in jejunum, ileum, liver, muscle, and lung tissue. We found in this sham-controlled acute sepsis pig model (control: = 9; sepsis: = 13) that jejunal mucosal protein turnover is reduced with both decreased FSR (control: 3.29 ± 0.22; sepsis: 2.32 ± 0.12%/h, = 0.0008) and FBR (control: 0.72 ± 0.12; sepsis: 0.34 ± 0.04%/h, = 0.006). We also found that FSR was unchanged in ileum and muscle, whereas it was higher in the liver (control: 0.87 ± 0.05; sepsis: 1.05 ± 0.06%/h, = 0.041). Our data, obtained with a translational acute sepsis model, suggest that jejunal mucosal protein metabolism is diminished in acute sepsis. Comparison with other tissues indicates that the most serious acute metabolic changes in sepsis occur in the jejunum rather than the muscle. In a highly translational acute sepsis model, presented data suggest that jejunal mucosal protein metabolism is diminished in acute sepsis, even if the origin of the sepsis is not located in the gut. Comparison with other tissues indicates that the most serious acute changes in the protein synthesis rates in sepsis occur in the gut rather than the muscle. Therefore, we hypothesize that preventing a compromised gut is critical to maintain gut function during sepsis.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Consciousness</subject><subject>Disease Models, Animal</subject><subject>Ileum</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestinal Mucosa - pathology</subject><subject>Jejunum</subject><subject>Jejunum - metabolism</subject><subject>Jejunum - pathology</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Metabolism</subject><subject>Mucosa</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Phenylalanine</subject><subject>Phenylalanine - pharmacokinetics</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Radioactive Tracers</subject><subject>Sepsis</subject><subject>Sepsis - metabolism</subject><subject>Sepsis - microbiology</subject><subject>Swine</subject><issn>0193-1857</issn><issn>1522-1547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EotuWOydkiQuXLB5_JbkgoQraSpXgQM-Wk4x3HRI7tZOi_vdk-6XCaSS_33ua8SPkPbAtgOKfbT_t_JYxycotZ1C9Ipv1mRegZPmabBjUooBKlUfkOOeeMaY4wFtyJFhdVgB8Q_xl2PvGzz4GGh3tsV-CHeiU4ow-0HwX5j1mn6kNHW0S2t9d_BPoKv3MuHRxjMGuIqZl50PMlhY-dEuLHc04HXyT39ExdjickjfODhnfPc4Tcv3926-zi-Lqx_nl2deropVczkVZOym4lhyFdRparYQsteVVaV2jXNm4qubWgQLWWdVYzZpWo5NcIGKtW3FCvjzkTkszYtdimJMdzJT8aNOdidabf5Xg92YXb43WnKkK1oBPjwEp3iyYZzP63OIw2IBxyYZzVqu61lCt6Mf_0D4uaf3AAyVBCFFJtVLsgWpTzDmhe14GmDn0aO57NPc9mkOPq-XDyyOeDU_Fib-e6Zxo</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ten Have, Gabriëlla A M</creator><creator>Engelen, Mariëlle P K J</creator><creator>Wolfe, Robert R</creator><creator>Deutz, Nicolaas E P</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5845-6447</orcidid><orcidid>https://orcid.org/0000-0003-2617-1193</orcidid></search><sort><creationdate>20190601</creationdate><title>Inhibition of jejunal protein synthesis and breakdown in Pseudomonas aeruginosa -induced sepsis pig model</title><author>Ten Have, Gabriëlla A M ; Engelen, Mariëlle P K J ; Wolfe, Robert R ; Deutz, Nicolaas E P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-79f432642e3af61c653476a287afb5f7bf892af1510da5ba60bc6ef423eee96c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Consciousness</topic><topic>Disease Models, Animal</topic><topic>Ileum</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestinal Mucosa - pathology</topic><topic>Jejunum</topic><topic>Jejunum - metabolism</topic><topic>Jejunum - pathology</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Metabolism</topic><topic>Mucosa</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Phenylalanine</topic><topic>Phenylalanine - pharmacokinetics</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Radioactive Tracers</topic><topic>Sepsis</topic><topic>Sepsis - metabolism</topic><topic>Sepsis - microbiology</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ten Have, Gabriëlla A M</creatorcontrib><creatorcontrib>Engelen, Mariëlle P K J</creatorcontrib><creatorcontrib>Wolfe, Robert R</creatorcontrib><creatorcontrib>Deutz, Nicolaas E P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology: Gastrointestinal and liver physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ten Have, Gabriëlla A M</au><au>Engelen, Mariëlle P K J</au><au>Wolfe, Robert R</au><au>Deutz, Nicolaas E P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of jejunal protein synthesis and breakdown in Pseudomonas aeruginosa -induced sepsis pig model</atitle><jtitle>American journal of physiology: Gastrointestinal and liver physiology</jtitle><addtitle>Am J Physiol Gastrointest Liver Physiol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>316</volume><issue>6</issue><spage>G755</spage><epage>G762</epage><pages>G755-G762</pages><issn>0193-1857</issn><eissn>1522-1547</eissn><abstract>Maintenance of gut integrity has long been recognized as crucial for survival in sepsis, but alterations in protein metabolism have not previously been documented. Therefore, in the present study, we measured in a -induced porcine sepsis model fractional protein synthesis (FSR) and breakdown rates (FBR) in jejunal mucosa in a fasted, conscious state. FSR was measured by the incorporation rate of stable tracer amino acid (l-[ - C ]phenylalanine) into tissue protein. FBR was determined using the relation between blood arterial enrichment and intracellular enrichment of phenylalanine in consecutive mucosal biopsies after a pulse of l-[ N]phenylalanine. Additionally, we determined the FSR in jejunum, ileum, liver, muscle, and lung tissue. We found in this sham-controlled acute sepsis pig model (control: = 9; sepsis: = 13) that jejunal mucosal protein turnover is reduced with both decreased FSR (control: 3.29 ± 0.22; sepsis: 2.32 ± 0.12%/h, = 0.0008) and FBR (control: 0.72 ± 0.12; sepsis: 0.34 ± 0.04%/h, = 0.006). We also found that FSR was unchanged in ileum and muscle, whereas it was higher in the liver (control: 0.87 ± 0.05; sepsis: 1.05 ± 0.06%/h, = 0.041). Our data, obtained with a translational acute sepsis model, suggest that jejunal mucosal protein metabolism is diminished in acute sepsis. Comparison with other tissues indicates that the most serious acute metabolic changes in sepsis occur in the jejunum rather than the muscle. In a highly translational acute sepsis model, presented data suggest that jejunal mucosal protein metabolism is diminished in acute sepsis, even if the origin of the sepsis is not located in the gut. Comparison with other tissues indicates that the most serious acute changes in the protein synthesis rates in sepsis occur in the gut rather than the muscle. Therefore, we hypothesize that preventing a compromised gut is critical to maintain gut function during sepsis.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>30978112</pmid><doi>10.1152/ajpgi.00407.2018</doi><orcidid>https://orcid.org/0000-0001-5845-6447</orcidid><orcidid>https://orcid.org/0000-0003-2617-1193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0193-1857
ispartof American journal of physiology: Gastrointestinal and liver physiology, 2019-06, Vol.316 (6), p.G755-G762
issn 0193-1857
1522-1547
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6620581
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Amino acids
Animals
Consciousness
Disease Models, Animal
Ileum
Intestinal Mucosa - metabolism
Intestinal Mucosa - pathology
Jejunum
Jejunum - metabolism
Jejunum - pathology
Liver
Liver - metabolism
Liver - pathology
Metabolism
Mucosa
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Phenylalanine
Phenylalanine - pharmacokinetics
Protein Biosynthesis
Protein synthesis
Protein turnover
Proteins
Pseudomonas aeruginosa
Pseudomonas aeruginosa - physiology
Radioactive Tracers
Sepsis
Sepsis - metabolism
Sepsis - microbiology
Swine
title Inhibition of jejunal protein synthesis and breakdown in Pseudomonas aeruginosa -induced sepsis pig model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20jejunal%20protein%20synthesis%20and%20breakdown%20in%20Pseudomonas%20aeruginosa%20-induced%20sepsis%20pig%20model&rft.jtitle=American%20journal%20of%20physiology:%20Gastrointestinal%20and%20liver%20physiology&rft.au=Ten%20Have,%20Gabri%C3%ABlla%20A%20M&rft.date=2019-06-01&rft.volume=316&rft.issue=6&rft.spage=G755&rft.epage=G762&rft.pages=G755-G762&rft.issn=0193-1857&rft.eissn=1522-1547&rft_id=info:doi/10.1152/ajpgi.00407.2018&rft_dat=%3Cproquest_pubme%3E2209599618%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2241333845&rft_id=info:pmid/30978112&rfr_iscdi=true