Probabilistic fine-mapping of transcriptome-wide association studies

Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene–trait associations at non-causal genes as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2019-04, Vol.51 (4), p.675-682
Hauptverfasser: Mancuso, Nicholas, Freund, Malika K., Johnson, Ruth, Shi, Huwenbo, Kichaev, Gleb, Gusev, Alexander, Pasaniuc, Bogdan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 682
container_issue 4
container_start_page 675
container_title Nature genetics
container_volume 51
creator Mancuso, Nicholas
Freund, Malika K.
Johnson, Ruth
Shi, Huwenbo
Kichaev, Gleb
Gusev, Alexander
Pasaniuc, Bogdan
description Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene–trait associations at non-causal genes as a function of the expression quantitative trait loci weights used in expression prediction. We introduce a probabilistic framework that models correlation among transcriptome-wide association study signals to assign a probability for every gene in the risk region to explain the observed association signal. Importantly, our approach remains accurate when expression data for causal genes are not available in the causal tissue by leveraging expression prediction from other tissues. Our approach yields credible sets of genes containing the causal gene at a nominal confidence level (for example, 90%) that can be used to prioritize genes for functional assays. We illustrate our approach by using an integrative analysis of lipid traits, where our approach prioritizes genes with strong evidence for causality. FOCUS (fine-mapping of causal gene sets) models correlation among TWAS signals to assign a probability for every gene in the risk region to explain the observed association signal while controlling for pleiotropic SNP effects and unmeasured causal expression.
doi_str_mv 10.1038/s41588-019-0367-1
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6619422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580621026</galeid><sourcerecordid>A580621026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-ce6bc4454f89ff31a630f89f222937fa0fc98606293f4fa26431d1b5360313fc3</originalsourceid><addsrcrecordid>eNqNkl1v1iAUx4nRuDn9AN6YJt7oBZMDlNIbk2W-LVky49stoRQqSwsVWl--vTTP3HyMJoYLDpzf-cM5-SP0EMgxECafZQ61lJhAiwkTDYZb6BBqLjA0IG-XmAjAvKQO0L2cLwkBzom8iw4YaaloG3KIXrxNsdOdH31evKmcDxZPep59GKroqiXpkE3y8xIni7_53lY652i8XnwMVV7W3tt8H91xesz2wdV-hD6-evnh9A0-v3h9dnpyjo1oYMHGis5wXnMnW-cYaMHIFlJKW9Y4TZxppSCinBx3mgrOoIeuZoIwYM6wI_R8pzuv3WR7Y0P536jm5CedfqiovdrPBP9ZDfGrEgJaTmkReHIlkOKX1eZFTT4bO4462LhmRSkhjaRCNAV9_Ad6GdcUSnsbJbZZCnlDDXq0ygcXy7tmE1UntSytAKGiUMd_ocrq7eRNDNb5cr9X8HSvoDCL_b4Mes1Znb1_9__sxad9FnasSTHnZN317ICozVJqZylVLKU2SykoNY9-H_p1xS8PFYDugFxSYbDpZlL_Vv0JRH7TZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206001468</pqid></control><display><type>article</type><title>Probabilistic fine-mapping of transcriptome-wide association studies</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Mancuso, Nicholas ; Freund, Malika K. ; Johnson, Ruth ; Shi, Huwenbo ; Kichaev, Gleb ; Gusev, Alexander ; Pasaniuc, Bogdan</creator><creatorcontrib>Mancuso, Nicholas ; Freund, Malika K. ; Johnson, Ruth ; Shi, Huwenbo ; Kichaev, Gleb ; Gusev, Alexander ; Pasaniuc, Bogdan</creatorcontrib><description>Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene–trait associations at non-causal genes as a function of the expression quantitative trait loci weights used in expression prediction. We introduce a probabilistic framework that models correlation among transcriptome-wide association study signals to assign a probability for every gene in the risk region to explain the observed association signal. Importantly, our approach remains accurate when expression data for causal genes are not available in the causal tissue by leveraging expression prediction from other tissues. Our approach yields credible sets of genes containing the causal gene at a nominal confidence level (for example, 90%) that can be used to prioritize genes for functional assays. We illustrate our approach by using an integrative analysis of lipid traits, where our approach prioritizes genes with strong evidence for causality. FOCUS (fine-mapping of causal gene sets) models correlation among TWAS signals to assign a probability for every gene in the risk region to explain the observed association signal while controlling for pleiotropic SNP effects and unmeasured causal expression.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-019-0367-1</identifier><identifier>PMID: 30926970</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/794 ; 631/208/199 ; 631/208/205/2138 ; Adipocytes ; Agriculture ; Animal Genetics and Genomics ; Bias ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Chromosome mapping ; Chromosome Mapping - methods ; Confidence intervals ; Correlation analysis ; Disease ; Gene expression ; Gene Function ; Gene mapping ; Genes ; Genetic Predisposition to Disease - genetics ; Genetic research ; Genome-wide association studies ; Genome-Wide Association Study - methods ; Genomes ; Glucose ; Human Genetics ; Humans ; Linkage disequilibrium ; Linkage Disequilibrium - genetics ; Lipids ; Mapping ; Metabolism ; Models, Genetic ; Phenotype ; Polymorphism, Single Nucleotide - genetics ; Predictions ; Probability ; Quantitative genetics ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Schizophrenia ; Statistical analysis ; Transcriptome - genetics</subject><ispartof>Nature genetics, 2019-04, Vol.51 (4), p.675-682</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-ce6bc4454f89ff31a630f89f222937fa0fc98606293f4fa26431d1b5360313fc3</citedby><cites>FETCH-LOGICAL-c671t-ce6bc4454f89ff31a630f89f222937fa0fc98606293f4fa26431d1b5360313fc3</cites><orcidid>0000-0002-7980-4620 ; 0000-0002-9352-5927 ; 0000-0002-0227-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30926970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mancuso, Nicholas</creatorcontrib><creatorcontrib>Freund, Malika K.</creatorcontrib><creatorcontrib>Johnson, Ruth</creatorcontrib><creatorcontrib>Shi, Huwenbo</creatorcontrib><creatorcontrib>Kichaev, Gleb</creatorcontrib><creatorcontrib>Gusev, Alexander</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><title>Probabilistic fine-mapping of transcriptome-wide association studies</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene–trait associations at non-causal genes as a function of the expression quantitative trait loci weights used in expression prediction. We introduce a probabilistic framework that models correlation among transcriptome-wide association study signals to assign a probability for every gene in the risk region to explain the observed association signal. Importantly, our approach remains accurate when expression data for causal genes are not available in the causal tissue by leveraging expression prediction from other tissues. Our approach yields credible sets of genes containing the causal gene at a nominal confidence level (for example, 90%) that can be used to prioritize genes for functional assays. We illustrate our approach by using an integrative analysis of lipid traits, where our approach prioritizes genes with strong evidence for causality. FOCUS (fine-mapping of causal gene sets) models correlation among TWAS signals to assign a probability for every gene in the risk region to explain the observed association signal while controlling for pleiotropic SNP effects and unmeasured causal expression.</description><subject>631/114/794</subject><subject>631/208/199</subject><subject>631/208/205/2138</subject><subject>Adipocytes</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Bias</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Chromosome mapping</subject><subject>Chromosome Mapping - methods</subject><subject>Confidence intervals</subject><subject>Correlation analysis</subject><subject>Disease</subject><subject>Gene expression</subject><subject>Gene Function</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genetic research</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Linkage disequilibrium</subject><subject>Linkage Disequilibrium - genetics</subject><subject>Lipids</subject><subject>Mapping</subject><subject>Metabolism</subject><subject>Models, Genetic</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Predictions</subject><subject>Probability</subject><subject>Quantitative genetics</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Schizophrenia</subject><subject>Statistical analysis</subject><subject>Transcriptome - genetics</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1v1iAUx4nRuDn9AN6YJt7oBZMDlNIbk2W-LVky49stoRQqSwsVWl--vTTP3HyMJoYLDpzf-cM5-SP0EMgxECafZQ61lJhAiwkTDYZb6BBqLjA0IG-XmAjAvKQO0L2cLwkBzom8iw4YaaloG3KIXrxNsdOdH31evKmcDxZPep59GKroqiXpkE3y8xIni7_53lY652i8XnwMVV7W3tt8H91xesz2wdV-hD6-evnh9A0-v3h9dnpyjo1oYMHGis5wXnMnW-cYaMHIFlJKW9Y4TZxppSCinBx3mgrOoIeuZoIwYM6wI_R8pzuv3WR7Y0P536jm5CedfqiovdrPBP9ZDfGrEgJaTmkReHIlkOKX1eZFTT4bO4462LhmRSkhjaRCNAV9_Ad6GdcUSnsbJbZZCnlDDXq0ygcXy7tmE1UntSytAKGiUMd_ocrq7eRNDNb5cr9X8HSvoDCL_b4Mes1Znb1_9__sxad9FnasSTHnZN317ICozVJqZylVLKU2SykoNY9-H_p1xS8PFYDugFxSYbDpZlL_Vv0JRH7TZA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Mancuso, Nicholas</creator><creator>Freund, Malika K.</creator><creator>Johnson, Ruth</creator><creator>Shi, Huwenbo</creator><creator>Kichaev, Gleb</creator><creator>Gusev, Alexander</creator><creator>Pasaniuc, Bogdan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7980-4620</orcidid><orcidid>https://orcid.org/0000-0002-9352-5927</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid></search><sort><creationdate>20190401</creationdate><title>Probabilistic fine-mapping of transcriptome-wide association studies</title><author>Mancuso, Nicholas ; Freund, Malika K. ; Johnson, Ruth ; Shi, Huwenbo ; Kichaev, Gleb ; Gusev, Alexander ; Pasaniuc, Bogdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-ce6bc4454f89ff31a630f89f222937fa0fc98606293f4fa26431d1b5360313fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114/794</topic><topic>631/208/199</topic><topic>631/208/205/2138</topic><topic>Adipocytes</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Bias</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Chromosome mapping</topic><topic>Chromosome Mapping - methods</topic><topic>Confidence intervals</topic><topic>Correlation analysis</topic><topic>Disease</topic><topic>Gene expression</topic><topic>Gene Function</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genetic research</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Linkage disequilibrium</topic><topic>Linkage Disequilibrium - genetics</topic><topic>Lipids</topic><topic>Mapping</topic><topic>Metabolism</topic><topic>Models, Genetic</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Predictions</topic><topic>Probability</topic><topic>Quantitative genetics</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Schizophrenia</topic><topic>Statistical analysis</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mancuso, Nicholas</creatorcontrib><creatorcontrib>Freund, Malika K.</creatorcontrib><creatorcontrib>Johnson, Ruth</creatorcontrib><creatorcontrib>Shi, Huwenbo</creatorcontrib><creatorcontrib>Kichaev, Gleb</creatorcontrib><creatorcontrib>Gusev, Alexander</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mancuso, Nicholas</au><au>Freund, Malika K.</au><au>Johnson, Ruth</au><au>Shi, Huwenbo</au><au>Kichaev, Gleb</au><au>Gusev, Alexander</au><au>Pasaniuc, Bogdan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic fine-mapping of transcriptome-wide association studies</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>675</spage><epage>682</epage><pages>675-682</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene–trait associations at non-causal genes as a function of the expression quantitative trait loci weights used in expression prediction. We introduce a probabilistic framework that models correlation among transcriptome-wide association study signals to assign a probability for every gene in the risk region to explain the observed association signal. Importantly, our approach remains accurate when expression data for causal genes are not available in the causal tissue by leveraging expression prediction from other tissues. Our approach yields credible sets of genes containing the causal gene at a nominal confidence level (for example, 90%) that can be used to prioritize genes for functional assays. We illustrate our approach by using an integrative analysis of lipid traits, where our approach prioritizes genes with strong evidence for causality. FOCUS (fine-mapping of causal gene sets) models correlation among TWAS signals to assign a probability for every gene in the risk region to explain the observed association signal while controlling for pleiotropic SNP effects and unmeasured causal expression.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30926970</pmid><doi>10.1038/s41588-019-0367-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7980-4620</orcidid><orcidid>https://orcid.org/0000-0002-9352-5927</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2019-04, Vol.51 (4), p.675-682
issn 1061-4036
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6619422
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/114/794
631/208/199
631/208/205/2138
Adipocytes
Agriculture
Animal Genetics and Genomics
Bias
Biomedical and Life Sciences
Biomedicine
Cancer Research
Chromosome mapping
Chromosome Mapping - methods
Confidence intervals
Correlation analysis
Disease
Gene expression
Gene Function
Gene mapping
Genes
Genetic Predisposition to Disease - genetics
Genetic research
Genome-wide association studies
Genome-Wide Association Study - methods
Genomes
Glucose
Human Genetics
Humans
Linkage disequilibrium
Linkage Disequilibrium - genetics
Lipids
Mapping
Metabolism
Models, Genetic
Phenotype
Polymorphism, Single Nucleotide - genetics
Predictions
Probability
Quantitative genetics
Quantitative trait loci
Quantitative Trait Loci - genetics
Schizophrenia
Statistical analysis
Transcriptome - genetics
title Probabilistic fine-mapping of transcriptome-wide association studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20fine-mapping%20of%20transcriptome-wide%20association%20studies&rft.jtitle=Nature%20genetics&rft.au=Mancuso,%20Nicholas&rft.date=2019-04-01&rft.volume=51&rft.issue=4&rft.spage=675&rft.epage=682&rft.pages=675-682&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-019-0367-1&rft_dat=%3Cgale_pubme%3EA580621026%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206001468&rft_id=info:pmid/30926970&rft_galeid=A580621026&rfr_iscdi=true