Probabilistic fine-mapping of transcriptome-wide association studies
Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene–trait associations at non-causal genes as...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2019-04, Vol.51 (4), p.675-682 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 682 |
---|---|
container_issue | 4 |
container_start_page | 675 |
container_title | Nature genetics |
container_volume | 51 |
creator | Mancuso, Nicholas Freund, Malika K. Johnson, Ruth Shi, Huwenbo Kichaev, Gleb Gusev, Alexander Pasaniuc, Bogdan |
description | Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene–trait associations at non-causal genes as a function of the expression quantitative trait loci weights used in expression prediction. We introduce a probabilistic framework that models correlation among transcriptome-wide association study signals to assign a probability for every gene in the risk region to explain the observed association signal. Importantly, our approach remains accurate when expression data for causal genes are not available in the causal tissue by leveraging expression prediction from other tissues. Our approach yields credible sets of genes containing the causal gene at a nominal confidence level (for example, 90%) that can be used to prioritize genes for functional assays. We illustrate our approach by using an integrative analysis of lipid traits, where our approach prioritizes genes with strong evidence for causality.
FOCUS (fine-mapping of causal gene sets) models correlation among TWAS signals to assign a probability for every gene in the risk region to explain the observed association signal while controlling for pleiotropic SNP effects and unmeasured causal expression. |
doi_str_mv | 10.1038/s41588-019-0367-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6619422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580621026</galeid><sourcerecordid>A580621026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-ce6bc4454f89ff31a630f89f222937fa0fc98606293f4fa26431d1b5360313fc3</originalsourceid><addsrcrecordid>eNqNkl1v1iAUx4nRuDn9AN6YJt7oBZMDlNIbk2W-LVky49stoRQqSwsVWl--vTTP3HyMJoYLDpzf-cM5-SP0EMgxECafZQ61lJhAiwkTDYZb6BBqLjA0IG-XmAjAvKQO0L2cLwkBzom8iw4YaaloG3KIXrxNsdOdH31evKmcDxZPep59GKroqiXpkE3y8xIni7_53lY652i8XnwMVV7W3tt8H91xesz2wdV-hD6-evnh9A0-v3h9dnpyjo1oYMHGis5wXnMnW-cYaMHIFlJKW9Y4TZxppSCinBx3mgrOoIeuZoIwYM6wI_R8pzuv3WR7Y0P536jm5CedfqiovdrPBP9ZDfGrEgJaTmkReHIlkOKX1eZFTT4bO4462LhmRSkhjaRCNAV9_Ad6GdcUSnsbJbZZCnlDDXq0ygcXy7tmE1UntSytAKGiUMd_ocrq7eRNDNb5cr9X8HSvoDCL_b4Mes1Znb1_9__sxad9FnasSTHnZN317ICozVJqZylVLKU2SykoNY9-H_p1xS8PFYDugFxSYbDpZlL_Vv0JRH7TZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206001468</pqid></control><display><type>article</type><title>Probabilistic fine-mapping of transcriptome-wide association studies</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Mancuso, Nicholas ; Freund, Malika K. ; Johnson, Ruth ; Shi, Huwenbo ; Kichaev, Gleb ; Gusev, Alexander ; Pasaniuc, Bogdan</creator><creatorcontrib>Mancuso, Nicholas ; Freund, Malika K. ; Johnson, Ruth ; Shi, Huwenbo ; Kichaev, Gleb ; Gusev, Alexander ; Pasaniuc, Bogdan</creatorcontrib><description>Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene–trait associations at non-causal genes as a function of the expression quantitative trait loci weights used in expression prediction. We introduce a probabilistic framework that models correlation among transcriptome-wide association study signals to assign a probability for every gene in the risk region to explain the observed association signal. Importantly, our approach remains accurate when expression data for causal genes are not available in the causal tissue by leveraging expression prediction from other tissues. Our approach yields credible sets of genes containing the causal gene at a nominal confidence level (for example, 90%) that can be used to prioritize genes for functional assays. We illustrate our approach by using an integrative analysis of lipid traits, where our approach prioritizes genes with strong evidence for causality.
FOCUS (fine-mapping of causal gene sets) models correlation among TWAS signals to assign a probability for every gene in the risk region to explain the observed association signal while controlling for pleiotropic SNP effects and unmeasured causal expression.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-019-0367-1</identifier><identifier>PMID: 30926970</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/794 ; 631/208/199 ; 631/208/205/2138 ; Adipocytes ; Agriculture ; Animal Genetics and Genomics ; Bias ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Chromosome mapping ; Chromosome Mapping - methods ; Confidence intervals ; Correlation analysis ; Disease ; Gene expression ; Gene Function ; Gene mapping ; Genes ; Genetic Predisposition to Disease - genetics ; Genetic research ; Genome-wide association studies ; Genome-Wide Association Study - methods ; Genomes ; Glucose ; Human Genetics ; Humans ; Linkage disequilibrium ; Linkage Disequilibrium - genetics ; Lipids ; Mapping ; Metabolism ; Models, Genetic ; Phenotype ; Polymorphism, Single Nucleotide - genetics ; Predictions ; Probability ; Quantitative genetics ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Schizophrenia ; Statistical analysis ; Transcriptome - genetics</subject><ispartof>Nature genetics, 2019-04, Vol.51 (4), p.675-682</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-ce6bc4454f89ff31a630f89f222937fa0fc98606293f4fa26431d1b5360313fc3</citedby><cites>FETCH-LOGICAL-c671t-ce6bc4454f89ff31a630f89f222937fa0fc98606293f4fa26431d1b5360313fc3</cites><orcidid>0000-0002-7980-4620 ; 0000-0002-9352-5927 ; 0000-0002-0227-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30926970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mancuso, Nicholas</creatorcontrib><creatorcontrib>Freund, Malika K.</creatorcontrib><creatorcontrib>Johnson, Ruth</creatorcontrib><creatorcontrib>Shi, Huwenbo</creatorcontrib><creatorcontrib>Kichaev, Gleb</creatorcontrib><creatorcontrib>Gusev, Alexander</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><title>Probabilistic fine-mapping of transcriptome-wide association studies</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene–trait associations at non-causal genes as a function of the expression quantitative trait loci weights used in expression prediction. We introduce a probabilistic framework that models correlation among transcriptome-wide association study signals to assign a probability for every gene in the risk region to explain the observed association signal. Importantly, our approach remains accurate when expression data for causal genes are not available in the causal tissue by leveraging expression prediction from other tissues. Our approach yields credible sets of genes containing the causal gene at a nominal confidence level (for example, 90%) that can be used to prioritize genes for functional assays. We illustrate our approach by using an integrative analysis of lipid traits, where our approach prioritizes genes with strong evidence for causality.
FOCUS (fine-mapping of causal gene sets) models correlation among TWAS signals to assign a probability for every gene in the risk region to explain the observed association signal while controlling for pleiotropic SNP effects and unmeasured causal expression.</description><subject>631/114/794</subject><subject>631/208/199</subject><subject>631/208/205/2138</subject><subject>Adipocytes</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Bias</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Chromosome mapping</subject><subject>Chromosome Mapping - methods</subject><subject>Confidence intervals</subject><subject>Correlation analysis</subject><subject>Disease</subject><subject>Gene expression</subject><subject>Gene Function</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genetic research</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Linkage disequilibrium</subject><subject>Linkage Disequilibrium - genetics</subject><subject>Lipids</subject><subject>Mapping</subject><subject>Metabolism</subject><subject>Models, Genetic</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Predictions</subject><subject>Probability</subject><subject>Quantitative genetics</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Schizophrenia</subject><subject>Statistical analysis</subject><subject>Transcriptome - genetics</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1v1iAUx4nRuDn9AN6YJt7oBZMDlNIbk2W-LVky49stoRQqSwsVWl--vTTP3HyMJoYLDpzf-cM5-SP0EMgxECafZQ61lJhAiwkTDYZb6BBqLjA0IG-XmAjAvKQO0L2cLwkBzom8iw4YaaloG3KIXrxNsdOdH31evKmcDxZPep59GKroqiXpkE3y8xIni7_53lY652i8XnwMVV7W3tt8H91xesz2wdV-hD6-evnh9A0-v3h9dnpyjo1oYMHGis5wXnMnW-cYaMHIFlJKW9Y4TZxppSCinBx3mgrOoIeuZoIwYM6wI_R8pzuv3WR7Y0P536jm5CedfqiovdrPBP9ZDfGrEgJaTmkReHIlkOKX1eZFTT4bO4462LhmRSkhjaRCNAV9_Ad6GdcUSnsbJbZZCnlDDXq0ygcXy7tmE1UntSytAKGiUMd_ocrq7eRNDNb5cr9X8HSvoDCL_b4Mes1Znb1_9__sxad9FnasSTHnZN317ICozVJqZylVLKU2SykoNY9-H_p1xS8PFYDugFxSYbDpZlL_Vv0JRH7TZA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Mancuso, Nicholas</creator><creator>Freund, Malika K.</creator><creator>Johnson, Ruth</creator><creator>Shi, Huwenbo</creator><creator>Kichaev, Gleb</creator><creator>Gusev, Alexander</creator><creator>Pasaniuc, Bogdan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7980-4620</orcidid><orcidid>https://orcid.org/0000-0002-9352-5927</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid></search><sort><creationdate>20190401</creationdate><title>Probabilistic fine-mapping of transcriptome-wide association studies</title><author>Mancuso, Nicholas ; Freund, Malika K. ; Johnson, Ruth ; Shi, Huwenbo ; Kichaev, Gleb ; Gusev, Alexander ; Pasaniuc, Bogdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-ce6bc4454f89ff31a630f89f222937fa0fc98606293f4fa26431d1b5360313fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114/794</topic><topic>631/208/199</topic><topic>631/208/205/2138</topic><topic>Adipocytes</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Bias</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Chromosome mapping</topic><topic>Chromosome Mapping - methods</topic><topic>Confidence intervals</topic><topic>Correlation analysis</topic><topic>Disease</topic><topic>Gene expression</topic><topic>Gene Function</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genetic research</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Linkage disequilibrium</topic><topic>Linkage Disequilibrium - genetics</topic><topic>Lipids</topic><topic>Mapping</topic><topic>Metabolism</topic><topic>Models, Genetic</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Predictions</topic><topic>Probability</topic><topic>Quantitative genetics</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Schizophrenia</topic><topic>Statistical analysis</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mancuso, Nicholas</creatorcontrib><creatorcontrib>Freund, Malika K.</creatorcontrib><creatorcontrib>Johnson, Ruth</creatorcontrib><creatorcontrib>Shi, Huwenbo</creatorcontrib><creatorcontrib>Kichaev, Gleb</creatorcontrib><creatorcontrib>Gusev, Alexander</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mancuso, Nicholas</au><au>Freund, Malika K.</au><au>Johnson, Ruth</au><au>Shi, Huwenbo</au><au>Kichaev, Gleb</au><au>Gusev, Alexander</au><au>Pasaniuc, Bogdan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic fine-mapping of transcriptome-wide association studies</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>675</spage><epage>682</epage><pages>675-682</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene–trait associations at non-causal genes as a function of the expression quantitative trait loci weights used in expression prediction. We introduce a probabilistic framework that models correlation among transcriptome-wide association study signals to assign a probability for every gene in the risk region to explain the observed association signal. Importantly, our approach remains accurate when expression data for causal genes are not available in the causal tissue by leveraging expression prediction from other tissues. Our approach yields credible sets of genes containing the causal gene at a nominal confidence level (for example, 90%) that can be used to prioritize genes for functional assays. We illustrate our approach by using an integrative analysis of lipid traits, where our approach prioritizes genes with strong evidence for causality.
FOCUS (fine-mapping of causal gene sets) models correlation among TWAS signals to assign a probability for every gene in the risk region to explain the observed association signal while controlling for pleiotropic SNP effects and unmeasured causal expression.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30926970</pmid><doi>10.1038/s41588-019-0367-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7980-4620</orcidid><orcidid>https://orcid.org/0000-0002-9352-5927</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2019-04, Vol.51 (4), p.675-682 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6619422 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/114/794 631/208/199 631/208/205/2138 Adipocytes Agriculture Animal Genetics and Genomics Bias Biomedical and Life Sciences Biomedicine Cancer Research Chromosome mapping Chromosome Mapping - methods Confidence intervals Correlation analysis Disease Gene expression Gene Function Gene mapping Genes Genetic Predisposition to Disease - genetics Genetic research Genome-wide association studies Genome-Wide Association Study - methods Genomes Glucose Human Genetics Humans Linkage disequilibrium Linkage Disequilibrium - genetics Lipids Mapping Metabolism Models, Genetic Phenotype Polymorphism, Single Nucleotide - genetics Predictions Probability Quantitative genetics Quantitative trait loci Quantitative Trait Loci - genetics Schizophrenia Statistical analysis Transcriptome - genetics |
title | Probabilistic fine-mapping of transcriptome-wide association studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20fine-mapping%20of%20transcriptome-wide%20association%20studies&rft.jtitle=Nature%20genetics&rft.au=Mancuso,%20Nicholas&rft.date=2019-04-01&rft.volume=51&rft.issue=4&rft.spage=675&rft.epage=682&rft.pages=675-682&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-019-0367-1&rft_dat=%3Cgale_pubme%3EA580621026%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206001468&rft_id=info:pmid/30926970&rft_galeid=A580621026&rfr_iscdi=true |