On high-frequency field oscillations (>100 Hz) and the spectral leakage of spiking activity

Recent reports converge to the idea that high-frequency oscillations in local field potentials (LFPs) represent multiunit activity. In particular, the amplitude of LFP activity above 100 Hz-commonly referred to as "high-gamma" or "epsilon" band-was found to correlate with firing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2013-01, Vol.33 (4), p.1535-1539
Hauptverfasser: Scheffer-Teixeira, Robson, Belchior, Hindiael, Leão, Richardson N, Ribeiro, Sidarta, Tort, Adriano B L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent reports converge to the idea that high-frequency oscillations in local field potentials (LFPs) represent multiunit activity. In particular, the amplitude of LFP activity above 100 Hz-commonly referred to as "high-gamma" or "epsilon" band-was found to correlate with firing rate. However, other studies suggest the existence of true LFP oscillations at this frequency range that are different from the well established ripple oscillations. Using multisite recordings of the hippocampus of freely moving rats, we show here that high-frequency LFP oscillations can represent either the spectral leakage of spiking activity or a genuine rhythm, depending on recording location. Both spike-leaked, spurious activity and true fast oscillations couple to theta phase; however, the two phenomena can be clearly distinguished by other key features, such as preferred coupling phase and spectral signatures. Our results argue against the idea that all high-frequency LFP activity stems from spike contamination and suggest avoiding defining brain rhythms solely based on frequency range.
ISSN:0270-6474
1529-2401
1529-2401
DOI:10.1523/jneurosci.4217-12.2013