Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks
In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2013-07, Vol.33 (31), p.12599-12618 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12618 |
---|---|
container_issue | 31 |
container_start_page | 12599 |
container_title | The Journal of neuroscience |
container_volume | 33 |
creator | Galliano, Elisa Potters, Jan-Willem Elgersma, Ype Wisden, William Kushner, Steven A De Zeeuw, Chris I Hoebeek, Freek E |
description | In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be clarified with an in-depth, systematic approach in mouse mutants. Here we subjected four different cerebellar cell-specific mouse lines whereby the excitatory or inhibitory input to Purkinje cells (PCs) and/or PC postsynaptic plasticity were compromised, to a wide battery of standard cognitive and emotional tests. The four lines, which have all been shown to suffer from impaired motor learning without being ataxic, were tested for social behavior using a sociability task, for spatial navigation using the Morris watermaze, for fear responses using contextual and cued conditioning, and general anxiety using the open-field task. None of the four cerebellum-specific genetic perturbations showed significantly impaired cognitive or emotional behavior. In fact, even without correction for multiple comparisons, only 5 of 154 statistical comparisons showed a marginally significant deficit. Therefore, our data indicate that none of the perturbations of cerebellar functioning studied here affected the cognitive or emotional tests we used. This suggests that there may be a differential impact of the murine and human cerebellum on nonmotor functions. We hypothesize that these differences could be a consequence of the remarkable enlargement of the cerebellar hemispheres during the latest phase of vertebrate phylogeny, which occurred in parallel with the evolution of the cerebral cortex. |
doi_str_mv | 10.1523/jneurosci.1642-13.2013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417527838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-1c6756445e4fa6d9d1144cda3819628db0c6d1742725bf5bb1d0fdb2e7921e5d3</originalsourceid><addsrcrecordid>eNqFUU1v1DAUtBCILoW_UPnIJYufP5MLEloVKKooovRsObFTvM3awXaQ9g_wu3HUUsGJ05Nm5o3evEHoDMgWBGVv9sEtKebBb0Fy2gDbUgLsCdpUtmsoJ_AUbQhVpJFc8RP0Iuc9IUQRUM_RCWUd4aJTG_Tr-hjMXPyASzIhH3zOPgZsgsXzZHIlfDliU7AP81IyLhEfluSDw4NLrnfTZBL-sqQ7H_YrNk0Zm-RwhW_ddMTW59mFbPrJ4TEmnEu1NsniEMMhlooUk-_yS_RsNFN2rx7mKbp5f_5t97G5vPpwsXt32QwCWGlgkEpIzoXjo5G2swCcD9awFjpJW9uTQVpQnCoq-lH0PVgy2p461VFwwrJT9Pbed176g7ODCzX2pOfkDyYddTRe_8sE_13fxp9aSmgF59Xg9YNBij8Wl4uuL1tjm-DikjUIAZKBBPp_KQclqGpZW6XyXjrUTnNy4-NFQPTat_70-fzm69X17kKvfWtgeu27Lp79nedx7U_B7DeRsK0i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417527838</pqid></control><display><type>article</type><title>Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Galliano, Elisa ; Potters, Jan-Willem ; Elgersma, Ype ; Wisden, William ; Kushner, Steven A ; De Zeeuw, Chris I ; Hoebeek, Freek E</creator><creatorcontrib>Galliano, Elisa ; Potters, Jan-Willem ; Elgersma, Ype ; Wisden, William ; Kushner, Steven A ; De Zeeuw, Chris I ; Hoebeek, Freek E</creatorcontrib><description>In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be clarified with an in-depth, systematic approach in mouse mutants. Here we subjected four different cerebellar cell-specific mouse lines whereby the excitatory or inhibitory input to Purkinje cells (PCs) and/or PC postsynaptic plasticity were compromised, to a wide battery of standard cognitive and emotional tests. The four lines, which have all been shown to suffer from impaired motor learning without being ataxic, were tested for social behavior using a sociability task, for spatial navigation using the Morris watermaze, for fear responses using contextual and cued conditioning, and general anxiety using the open-field task. None of the four cerebellum-specific genetic perturbations showed significantly impaired cognitive or emotional behavior. In fact, even without correction for multiple comparisons, only 5 of 154 statistical comparisons showed a marginally significant deficit. Therefore, our data indicate that none of the perturbations of cerebellar functioning studied here affected the cognitive or emotional tests we used. This suggests that there may be a differential impact of the murine and human cerebellum on nonmotor functions. We hypothesize that these differences could be a consequence of the remarkable enlargement of the cerebellar hemispheres during the latest phase of vertebrate phylogeny, which occurred in parallel with the evolution of the cerebral cortex.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.1642-13.2013</identifier><identifier>PMID: 23904597</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Affective Symptoms - genetics ; Affective Symptoms - physiopathology ; Animals ; Calcium Channels, N-Type - deficiency ; Calcium Channels, N-Type - metabolism ; Cerebellum - cytology ; Cognition Disorders - genetics ; Cognition Disorders - physiopathology ; Conditioning (Psychology) - physiology ; Exploratory Behavior - physiology ; Fear - psychology ; Female ; Functional Laterality ; Gene Expression Regulation - genetics ; Male ; Maze Learning - physiology ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity - genetics ; Neuronal Plasticity - physiology ; Psychomotor Performance - physiology ; Purkinje Cells - cytology ; Purkinje Cells - physiology ; Rotarod Performance Test ; Smell - genetics ; Synaptic Transmission - genetics ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 2013-07, Vol.33 (31), p.12599-12618</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/3312599-20$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-1c6756445e4fa6d9d1144cda3819628db0c6d1742725bf5bb1d0fdb2e7921e5d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618544/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618544/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23904597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galliano, Elisa</creatorcontrib><creatorcontrib>Potters, Jan-Willem</creatorcontrib><creatorcontrib>Elgersma, Ype</creatorcontrib><creatorcontrib>Wisden, William</creatorcontrib><creatorcontrib>Kushner, Steven A</creatorcontrib><creatorcontrib>De Zeeuw, Chris I</creatorcontrib><creatorcontrib>Hoebeek, Freek E</creatorcontrib><title>Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be clarified with an in-depth, systematic approach in mouse mutants. Here we subjected four different cerebellar cell-specific mouse lines whereby the excitatory or inhibitory input to Purkinje cells (PCs) and/or PC postsynaptic plasticity were compromised, to a wide battery of standard cognitive and emotional tests. The four lines, which have all been shown to suffer from impaired motor learning without being ataxic, were tested for social behavior using a sociability task, for spatial navigation using the Morris watermaze, for fear responses using contextual and cued conditioning, and general anxiety using the open-field task. None of the four cerebellum-specific genetic perturbations showed significantly impaired cognitive or emotional behavior. In fact, even without correction for multiple comparisons, only 5 of 154 statistical comparisons showed a marginally significant deficit. Therefore, our data indicate that none of the perturbations of cerebellar functioning studied here affected the cognitive or emotional tests we used. This suggests that there may be a differential impact of the murine and human cerebellum on nonmotor functions. We hypothesize that these differences could be a consequence of the remarkable enlargement of the cerebellar hemispheres during the latest phase of vertebrate phylogeny, which occurred in parallel with the evolution of the cerebral cortex.</description><subject>Affective Symptoms - genetics</subject><subject>Affective Symptoms - physiopathology</subject><subject>Animals</subject><subject>Calcium Channels, N-Type - deficiency</subject><subject>Calcium Channels, N-Type - metabolism</subject><subject>Cerebellum - cytology</subject><subject>Cognition Disorders - genetics</subject><subject>Cognition Disorders - physiopathology</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Exploratory Behavior - physiology</subject><subject>Fear - psychology</subject><subject>Female</subject><subject>Functional Laterality</subject><subject>Gene Expression Regulation - genetics</subject><subject>Male</subject><subject>Maze Learning - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neuronal Plasticity - physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Purkinje Cells - cytology</subject><subject>Purkinje Cells - physiology</subject><subject>Rotarod Performance Test</subject><subject>Smell - genetics</subject><subject>Synaptic Transmission - genetics</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAUtBCILoW_UPnIJYufP5MLEloVKKooovRsObFTvM3awXaQ9g_wu3HUUsGJ05Nm5o3evEHoDMgWBGVv9sEtKebBb0Fy2gDbUgLsCdpUtmsoJ_AUbQhVpJFc8RP0Iuc9IUQRUM_RCWUd4aJTG_Tr-hjMXPyASzIhH3zOPgZsgsXzZHIlfDliU7AP81IyLhEfluSDw4NLrnfTZBL-sqQ7H_YrNk0Zm-RwhW_ddMTW59mFbPrJ4TEmnEu1NsniEMMhlooUk-_yS_RsNFN2rx7mKbp5f_5t97G5vPpwsXt32QwCWGlgkEpIzoXjo5G2swCcD9awFjpJW9uTQVpQnCoq-lH0PVgy2p461VFwwrJT9Pbed176g7ODCzX2pOfkDyYddTRe_8sE_13fxp9aSmgF59Xg9YNBij8Wl4uuL1tjm-DikjUIAZKBBPp_KQclqGpZW6XyXjrUTnNy4-NFQPTat_70-fzm69X17kKvfWtgeu27Lp79nedx7U_B7DeRsK0i</recordid><startdate>20130731</startdate><enddate>20130731</enddate><creator>Galliano, Elisa</creator><creator>Potters, Jan-Willem</creator><creator>Elgersma, Ype</creator><creator>Wisden, William</creator><creator>Kushner, Steven A</creator><creator>De Zeeuw, Chris I</creator><creator>Hoebeek, Freek E</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QG</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20130731</creationdate><title>Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks</title><author>Galliano, Elisa ; Potters, Jan-Willem ; Elgersma, Ype ; Wisden, William ; Kushner, Steven A ; De Zeeuw, Chris I ; Hoebeek, Freek E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-1c6756445e4fa6d9d1144cda3819628db0c6d1742725bf5bb1d0fdb2e7921e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Affective Symptoms - genetics</topic><topic>Affective Symptoms - physiopathology</topic><topic>Animals</topic><topic>Calcium Channels, N-Type - deficiency</topic><topic>Calcium Channels, N-Type - metabolism</topic><topic>Cerebellum - cytology</topic><topic>Cognition Disorders - genetics</topic><topic>Cognition Disorders - physiopathology</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Exploratory Behavior - physiology</topic><topic>Fear - psychology</topic><topic>Female</topic><topic>Functional Laterality</topic><topic>Gene Expression Regulation - genetics</topic><topic>Male</topic><topic>Maze Learning - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neuronal Plasticity - physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Purkinje Cells - cytology</topic><topic>Purkinje Cells - physiology</topic><topic>Rotarod Performance Test</topic><topic>Smell - genetics</topic><topic>Synaptic Transmission - genetics</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galliano, Elisa</creatorcontrib><creatorcontrib>Potters, Jan-Willem</creatorcontrib><creatorcontrib>Elgersma, Ype</creatorcontrib><creatorcontrib>Wisden, William</creatorcontrib><creatorcontrib>Kushner, Steven A</creatorcontrib><creatorcontrib>De Zeeuw, Chris I</creatorcontrib><creatorcontrib>Hoebeek, Freek E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galliano, Elisa</au><au>Potters, Jan-Willem</au><au>Elgersma, Ype</au><au>Wisden, William</au><au>Kushner, Steven A</au><au>De Zeeuw, Chris I</au><au>Hoebeek, Freek E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-07-31</date><risdate>2013</risdate><volume>33</volume><issue>31</issue><spage>12599</spage><epage>12618</epage><pages>12599-12618</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be clarified with an in-depth, systematic approach in mouse mutants. Here we subjected four different cerebellar cell-specific mouse lines whereby the excitatory or inhibitory input to Purkinje cells (PCs) and/or PC postsynaptic plasticity were compromised, to a wide battery of standard cognitive and emotional tests. The four lines, which have all been shown to suffer from impaired motor learning without being ataxic, were tested for social behavior using a sociability task, for spatial navigation using the Morris watermaze, for fear responses using contextual and cued conditioning, and general anxiety using the open-field task. None of the four cerebellum-specific genetic perturbations showed significantly impaired cognitive or emotional behavior. In fact, even without correction for multiple comparisons, only 5 of 154 statistical comparisons showed a marginally significant deficit. Therefore, our data indicate that none of the perturbations of cerebellar functioning studied here affected the cognitive or emotional tests we used. This suggests that there may be a differential impact of the murine and human cerebellum on nonmotor functions. We hypothesize that these differences could be a consequence of the remarkable enlargement of the cerebellar hemispheres during the latest phase of vertebrate phylogeny, which occurred in parallel with the evolution of the cerebral cortex.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>23904597</pmid><doi>10.1523/jneurosci.1642-13.2013</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2013-07, Vol.33 (31), p.12599-12618 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618544 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Affective Symptoms - genetics Affective Symptoms - physiopathology Animals Calcium Channels, N-Type - deficiency Calcium Channels, N-Type - metabolism Cerebellum - cytology Cognition Disorders - genetics Cognition Disorders - physiopathology Conditioning (Psychology) - physiology Exploratory Behavior - physiology Fear - psychology Female Functional Laterality Gene Expression Regulation - genetics Male Maze Learning - physiology Mice Mice, Inbred C57BL Neuronal Plasticity - genetics Neuronal Plasticity - physiology Psychomotor Performance - physiology Purkinje Cells - cytology Purkinje Cells - physiology Rotarod Performance Test Smell - genetics Synaptic Transmission - genetics Synaptic Transmission - physiology |
title | Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20transmission%20and%20plasticity%20at%20inputs%20to%20murine%20cerebellar%20Purkinje%20cells%20are%20largely%20dispensable%20for%20standard%20nonmotor%20tasks&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Galliano,%20Elisa&rft.date=2013-07-31&rft.volume=33&rft.issue=31&rft.spage=12599&rft.epage=12618&rft.pages=12599-12618&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.1642-13.2013&rft_dat=%3Cproquest_pubme%3E1417527838%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417527838&rft_id=info:pmid/23904597&rfr_iscdi=true |