Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks

In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2013-07, Vol.33 (31), p.12599-12618
Hauptverfasser: Galliano, Elisa, Potters, Jan-Willem, Elgersma, Ype, Wisden, William, Kushner, Steven A, De Zeeuw, Chris I, Hoebeek, Freek E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12618
container_issue 31
container_start_page 12599
container_title The Journal of neuroscience
container_volume 33
creator Galliano, Elisa
Potters, Jan-Willem
Elgersma, Ype
Wisden, William
Kushner, Steven A
De Zeeuw, Chris I
Hoebeek, Freek E
description In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be clarified with an in-depth, systematic approach in mouse mutants. Here we subjected four different cerebellar cell-specific mouse lines whereby the excitatory or inhibitory input to Purkinje cells (PCs) and/or PC postsynaptic plasticity were compromised, to a wide battery of standard cognitive and emotional tests. The four lines, which have all been shown to suffer from impaired motor learning without being ataxic, were tested for social behavior using a sociability task, for spatial navigation using the Morris watermaze, for fear responses using contextual and cued conditioning, and general anxiety using the open-field task. None of the four cerebellum-specific genetic perturbations showed significantly impaired cognitive or emotional behavior. In fact, even without correction for multiple comparisons, only 5 of 154 statistical comparisons showed a marginally significant deficit. Therefore, our data indicate that none of the perturbations of cerebellar functioning studied here affected the cognitive or emotional tests we used. This suggests that there may be a differential impact of the murine and human cerebellum on nonmotor functions. We hypothesize that these differences could be a consequence of the remarkable enlargement of the cerebellar hemispheres during the latest phase of vertebrate phylogeny, which occurred in parallel with the evolution of the cerebral cortex.
doi_str_mv 10.1523/jneurosci.1642-13.2013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417527838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-1c6756445e4fa6d9d1144cda3819628db0c6d1742725bf5bb1d0fdb2e7921e5d3</originalsourceid><addsrcrecordid>eNqFUU1v1DAUtBCILoW_UPnIJYufP5MLEloVKKooovRsObFTvM3awXaQ9g_wu3HUUsGJ05Nm5o3evEHoDMgWBGVv9sEtKebBb0Fy2gDbUgLsCdpUtmsoJ_AUbQhVpJFc8RP0Iuc9IUQRUM_RCWUd4aJTG_Tr-hjMXPyASzIhH3zOPgZsgsXzZHIlfDliU7AP81IyLhEfluSDw4NLrnfTZBL-sqQ7H_YrNk0Zm-RwhW_ddMTW59mFbPrJ4TEmnEu1NsniEMMhlooUk-_yS_RsNFN2rx7mKbp5f_5t97G5vPpwsXt32QwCWGlgkEpIzoXjo5G2swCcD9awFjpJW9uTQVpQnCoq-lH0PVgy2p461VFwwrJT9Pbed176g7ODCzX2pOfkDyYddTRe_8sE_13fxp9aSmgF59Xg9YNBij8Wl4uuL1tjm-DikjUIAZKBBPp_KQclqGpZW6XyXjrUTnNy4-NFQPTat_70-fzm69X17kKvfWtgeu27Lp79nedx7U_B7DeRsK0i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417527838</pqid></control><display><type>article</type><title>Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Galliano, Elisa ; Potters, Jan-Willem ; Elgersma, Ype ; Wisden, William ; Kushner, Steven A ; De Zeeuw, Chris I ; Hoebeek, Freek E</creator><creatorcontrib>Galliano, Elisa ; Potters, Jan-Willem ; Elgersma, Ype ; Wisden, William ; Kushner, Steven A ; De Zeeuw, Chris I ; Hoebeek, Freek E</creatorcontrib><description>In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be clarified with an in-depth, systematic approach in mouse mutants. Here we subjected four different cerebellar cell-specific mouse lines whereby the excitatory or inhibitory input to Purkinje cells (PCs) and/or PC postsynaptic plasticity were compromised, to a wide battery of standard cognitive and emotional tests. The four lines, which have all been shown to suffer from impaired motor learning without being ataxic, were tested for social behavior using a sociability task, for spatial navigation using the Morris watermaze, for fear responses using contextual and cued conditioning, and general anxiety using the open-field task. None of the four cerebellum-specific genetic perturbations showed significantly impaired cognitive or emotional behavior. In fact, even without correction for multiple comparisons, only 5 of 154 statistical comparisons showed a marginally significant deficit. Therefore, our data indicate that none of the perturbations of cerebellar functioning studied here affected the cognitive or emotional tests we used. This suggests that there may be a differential impact of the murine and human cerebellum on nonmotor functions. We hypothesize that these differences could be a consequence of the remarkable enlargement of the cerebellar hemispheres during the latest phase of vertebrate phylogeny, which occurred in parallel with the evolution of the cerebral cortex.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.1642-13.2013</identifier><identifier>PMID: 23904597</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Affective Symptoms - genetics ; Affective Symptoms - physiopathology ; Animals ; Calcium Channels, N-Type - deficiency ; Calcium Channels, N-Type - metabolism ; Cerebellum - cytology ; Cognition Disorders - genetics ; Cognition Disorders - physiopathology ; Conditioning (Psychology) - physiology ; Exploratory Behavior - physiology ; Fear - psychology ; Female ; Functional Laterality ; Gene Expression Regulation - genetics ; Male ; Maze Learning - physiology ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity - genetics ; Neuronal Plasticity - physiology ; Psychomotor Performance - physiology ; Purkinje Cells - cytology ; Purkinje Cells - physiology ; Rotarod Performance Test ; Smell - genetics ; Synaptic Transmission - genetics ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 2013-07, Vol.33 (31), p.12599-12618</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/3312599-20$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-1c6756445e4fa6d9d1144cda3819628db0c6d1742725bf5bb1d0fdb2e7921e5d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618544/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618544/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23904597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galliano, Elisa</creatorcontrib><creatorcontrib>Potters, Jan-Willem</creatorcontrib><creatorcontrib>Elgersma, Ype</creatorcontrib><creatorcontrib>Wisden, William</creatorcontrib><creatorcontrib>Kushner, Steven A</creatorcontrib><creatorcontrib>De Zeeuw, Chris I</creatorcontrib><creatorcontrib>Hoebeek, Freek E</creatorcontrib><title>Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be clarified with an in-depth, systematic approach in mouse mutants. Here we subjected four different cerebellar cell-specific mouse lines whereby the excitatory or inhibitory input to Purkinje cells (PCs) and/or PC postsynaptic plasticity were compromised, to a wide battery of standard cognitive and emotional tests. The four lines, which have all been shown to suffer from impaired motor learning without being ataxic, were tested for social behavior using a sociability task, for spatial navigation using the Morris watermaze, for fear responses using contextual and cued conditioning, and general anxiety using the open-field task. None of the four cerebellum-specific genetic perturbations showed significantly impaired cognitive or emotional behavior. In fact, even without correction for multiple comparisons, only 5 of 154 statistical comparisons showed a marginally significant deficit. Therefore, our data indicate that none of the perturbations of cerebellar functioning studied here affected the cognitive or emotional tests we used. This suggests that there may be a differential impact of the murine and human cerebellum on nonmotor functions. We hypothesize that these differences could be a consequence of the remarkable enlargement of the cerebellar hemispheres during the latest phase of vertebrate phylogeny, which occurred in parallel with the evolution of the cerebral cortex.</description><subject>Affective Symptoms - genetics</subject><subject>Affective Symptoms - physiopathology</subject><subject>Animals</subject><subject>Calcium Channels, N-Type - deficiency</subject><subject>Calcium Channels, N-Type - metabolism</subject><subject>Cerebellum - cytology</subject><subject>Cognition Disorders - genetics</subject><subject>Cognition Disorders - physiopathology</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Exploratory Behavior - physiology</subject><subject>Fear - psychology</subject><subject>Female</subject><subject>Functional Laterality</subject><subject>Gene Expression Regulation - genetics</subject><subject>Male</subject><subject>Maze Learning - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neuronal Plasticity - physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Purkinje Cells - cytology</subject><subject>Purkinje Cells - physiology</subject><subject>Rotarod Performance Test</subject><subject>Smell - genetics</subject><subject>Synaptic Transmission - genetics</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAUtBCILoW_UPnIJYufP5MLEloVKKooovRsObFTvM3awXaQ9g_wu3HUUsGJ05Nm5o3evEHoDMgWBGVv9sEtKebBb0Fy2gDbUgLsCdpUtmsoJ_AUbQhVpJFc8RP0Iuc9IUQRUM_RCWUd4aJTG_Tr-hjMXPyASzIhH3zOPgZsgsXzZHIlfDliU7AP81IyLhEfluSDw4NLrnfTZBL-sqQ7H_YrNk0Zm-RwhW_ddMTW59mFbPrJ4TEmnEu1NsniEMMhlooUk-_yS_RsNFN2rx7mKbp5f_5t97G5vPpwsXt32QwCWGlgkEpIzoXjo5G2swCcD9awFjpJW9uTQVpQnCoq-lH0PVgy2p461VFwwrJT9Pbed176g7ODCzX2pOfkDyYddTRe_8sE_13fxp9aSmgF59Xg9YNBij8Wl4uuL1tjm-DikjUIAZKBBPp_KQclqGpZW6XyXjrUTnNy4-NFQPTat_70-fzm69X17kKvfWtgeu27Lp79nedx7U_B7DeRsK0i</recordid><startdate>20130731</startdate><enddate>20130731</enddate><creator>Galliano, Elisa</creator><creator>Potters, Jan-Willem</creator><creator>Elgersma, Ype</creator><creator>Wisden, William</creator><creator>Kushner, Steven A</creator><creator>De Zeeuw, Chris I</creator><creator>Hoebeek, Freek E</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QG</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20130731</creationdate><title>Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks</title><author>Galliano, Elisa ; Potters, Jan-Willem ; Elgersma, Ype ; Wisden, William ; Kushner, Steven A ; De Zeeuw, Chris I ; Hoebeek, Freek E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-1c6756445e4fa6d9d1144cda3819628db0c6d1742725bf5bb1d0fdb2e7921e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Affective Symptoms - genetics</topic><topic>Affective Symptoms - physiopathology</topic><topic>Animals</topic><topic>Calcium Channels, N-Type - deficiency</topic><topic>Calcium Channels, N-Type - metabolism</topic><topic>Cerebellum - cytology</topic><topic>Cognition Disorders - genetics</topic><topic>Cognition Disorders - physiopathology</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Exploratory Behavior - physiology</topic><topic>Fear - psychology</topic><topic>Female</topic><topic>Functional Laterality</topic><topic>Gene Expression Regulation - genetics</topic><topic>Male</topic><topic>Maze Learning - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neuronal Plasticity - physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Purkinje Cells - cytology</topic><topic>Purkinje Cells - physiology</topic><topic>Rotarod Performance Test</topic><topic>Smell - genetics</topic><topic>Synaptic Transmission - genetics</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galliano, Elisa</creatorcontrib><creatorcontrib>Potters, Jan-Willem</creatorcontrib><creatorcontrib>Elgersma, Ype</creatorcontrib><creatorcontrib>Wisden, William</creatorcontrib><creatorcontrib>Kushner, Steven A</creatorcontrib><creatorcontrib>De Zeeuw, Chris I</creatorcontrib><creatorcontrib>Hoebeek, Freek E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galliano, Elisa</au><au>Potters, Jan-Willem</au><au>Elgersma, Ype</au><au>Wisden, William</au><au>Kushner, Steven A</au><au>De Zeeuw, Chris I</au><au>Hoebeek, Freek E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-07-31</date><risdate>2013</risdate><volume>33</volume><issue>31</issue><spage>12599</spage><epage>12618</epage><pages>12599-12618</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be clarified with an in-depth, systematic approach in mouse mutants. Here we subjected four different cerebellar cell-specific mouse lines whereby the excitatory or inhibitory input to Purkinje cells (PCs) and/or PC postsynaptic plasticity were compromised, to a wide battery of standard cognitive and emotional tests. The four lines, which have all been shown to suffer from impaired motor learning without being ataxic, were tested for social behavior using a sociability task, for spatial navigation using the Morris watermaze, for fear responses using contextual and cued conditioning, and general anxiety using the open-field task. None of the four cerebellum-specific genetic perturbations showed significantly impaired cognitive or emotional behavior. In fact, even without correction for multiple comparisons, only 5 of 154 statistical comparisons showed a marginally significant deficit. Therefore, our data indicate that none of the perturbations of cerebellar functioning studied here affected the cognitive or emotional tests we used. This suggests that there may be a differential impact of the murine and human cerebellum on nonmotor functions. We hypothesize that these differences could be a consequence of the remarkable enlargement of the cerebellar hemispheres during the latest phase of vertebrate phylogeny, which occurred in parallel with the evolution of the cerebral cortex.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>23904597</pmid><doi>10.1523/jneurosci.1642-13.2013</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2013-07, Vol.33 (31), p.12599-12618
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618544
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Affective Symptoms - genetics
Affective Symptoms - physiopathology
Animals
Calcium Channels, N-Type - deficiency
Calcium Channels, N-Type - metabolism
Cerebellum - cytology
Cognition Disorders - genetics
Cognition Disorders - physiopathology
Conditioning (Psychology) - physiology
Exploratory Behavior - physiology
Fear - psychology
Female
Functional Laterality
Gene Expression Regulation - genetics
Male
Maze Learning - physiology
Mice
Mice, Inbred C57BL
Neuronal Plasticity - genetics
Neuronal Plasticity - physiology
Psychomotor Performance - physiology
Purkinje Cells - cytology
Purkinje Cells - physiology
Rotarod Performance Test
Smell - genetics
Synaptic Transmission - genetics
Synaptic Transmission - physiology
title Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20transmission%20and%20plasticity%20at%20inputs%20to%20murine%20cerebellar%20Purkinje%20cells%20are%20largely%20dispensable%20for%20standard%20nonmotor%20tasks&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Galliano,%20Elisa&rft.date=2013-07-31&rft.volume=33&rft.issue=31&rft.spage=12599&rft.epage=12618&rft.pages=12599-12618&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.1642-13.2013&rft_dat=%3Cproquest_pubme%3E1417527838%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417527838&rft_id=info:pmid/23904597&rfr_iscdi=true