Investigating axonal guidance with microdevice-based approaches

The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2013-11, Vol.33 (45), p.17647-17655
Hauptverfasser: Dupin, Isabelle, Dahan, Maxime, Studer, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17655
container_issue 45
container_start_page 17647
container_title The Journal of neuroscience
container_volume 33
creator Dupin, Isabelle
Dahan, Maxime
Studer, Vincent
description The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation of microfabrication techniques in cell biology now enables a precise control of the extracellular physical and chemical environment of cultured cells. However, microtechnology is only beginning to be applied in the field of axon guidance due to specific requirements of neuronal cultures. Here we review microdevices specifically designed to study axonal guidance and compare them with the conventional assays used to probe gradient sensing in cell biology. We also discuss how innovative microdevice-based approaches will enable the investigation of important systems-level questions on the gradient sensing properties of nerve cells, such as the sensitivity and robustness in the detection of directional signals or the combinatorial response to multiple cues.
doi_str_mv 10.1523/JNEUROSCI.3277-13.2013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551631858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-17f85a7bb3a2bf423105c0da22e3c3ee63970b7e801d36755794053316fd9b823</originalsourceid><addsrcrecordid>eNqFkclO40AQhltoEITlFZCPc3Go6urFvsxoFLEEIZBYzq12u500cuyM2wnw9jgCIjhxqsO_qKo-xk4Qxig5nV7dnD3e3d5PpmPiWqdIYw5IO2w0qHnKBeAvNgKuIVVCi312EOMTAGhAvcf2ucA8I6lH7O-0WfvYh5ntQzNL7Evb2DqZrUJpG-eT59DPk0VwXVv6dXA-LWz0ZWKXy661bu7jEdutbB398cc8ZI_nZw-Ty_T69mI6-XedOgnQp6irTFpdFGR5UQlOCNJBaTn35Mh7RbmGQvsMsCSlpdS5AEmEqirzIuN0yP689y5XxcKXzjd9Z2uz7MLCdq-mtcF8V5owN7N2bZTCTHAYCn5_FHTt_9VwslmE6Hxd28a3q2hQSlSEmcx-tgqRa5WhFINVvVuHD8XY-Wq7EYLZgDJbUGYDyiCZDaghePL1nm3skwy9Ad8pkAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449768154</pqid></control><display><type>article</type><title>Investigating axonal guidance with microdevice-based approaches</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Dupin, Isabelle ; Dahan, Maxime ; Studer, Vincent</creator><creatorcontrib>Dupin, Isabelle ; Dahan, Maxime ; Studer, Vincent</creatorcontrib><description>The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation of microfabrication techniques in cell biology now enables a precise control of the extracellular physical and chemical environment of cultured cells. However, microtechnology is only beginning to be applied in the field of axon guidance due to specific requirements of neuronal cultures. Here we review microdevices specifically designed to study axonal guidance and compare them with the conventional assays used to probe gradient sensing in cell biology. We also discuss how innovative microdevice-based approaches will enable the investigation of important systems-level questions on the gradient sensing properties of nerve cells, such as the sensitivity and robustness in the detection of directional signals or the combinatorial response to multiple cues.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3277-13.2013</identifier><identifier>PMID: 24198357</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Axons - physiology ; Cell Movement - physiology ; Cells, Cultured ; Coculture Techniques ; Growth Cones - physiology ; Neurons - cytology ; Neurons - physiology ; Neurosciences - methods ; Signal Transduction - physiology ; Toolbox</subject><ispartof>The Journal of neuroscience, 2013-11, Vol.33 (45), p.17647-17655</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/3317647-09$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-17f85a7bb3a2bf423105c0da22e3c3ee63970b7e801d36755794053316fd9b823</citedby><cites>FETCH-LOGICAL-c500t-17f85a7bb3a2bf423105c0da22e3c3ee63970b7e801d36755794053316fd9b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618420/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618420/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24198357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dupin, Isabelle</creatorcontrib><creatorcontrib>Dahan, Maxime</creatorcontrib><creatorcontrib>Studer, Vincent</creatorcontrib><title>Investigating axonal guidance with microdevice-based approaches</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation of microfabrication techniques in cell biology now enables a precise control of the extracellular physical and chemical environment of cultured cells. However, microtechnology is only beginning to be applied in the field of axon guidance due to specific requirements of neuronal cultures. Here we review microdevices specifically designed to study axonal guidance and compare them with the conventional assays used to probe gradient sensing in cell biology. We also discuss how innovative microdevice-based approaches will enable the investigation of important systems-level questions on the gradient sensing properties of nerve cells, such as the sensitivity and robustness in the detection of directional signals or the combinatorial response to multiple cues.</description><subject>Animals</subject><subject>Axons - physiology</subject><subject>Cell Movement - physiology</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>Growth Cones - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurosciences - methods</subject><subject>Signal Transduction - physiology</subject><subject>Toolbox</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkclO40AQhltoEITlFZCPc3Go6urFvsxoFLEEIZBYzq12u500cuyM2wnw9jgCIjhxqsO_qKo-xk4Qxig5nV7dnD3e3d5PpmPiWqdIYw5IO2w0qHnKBeAvNgKuIVVCi312EOMTAGhAvcf2ucA8I6lH7O-0WfvYh5ntQzNL7Evb2DqZrUJpG-eT59DPk0VwXVv6dXA-LWz0ZWKXy661bu7jEdutbB398cc8ZI_nZw-Ty_T69mI6-XedOgnQp6irTFpdFGR5UQlOCNJBaTn35Mh7RbmGQvsMsCSlpdS5AEmEqirzIuN0yP689y5XxcKXzjd9Z2uz7MLCdq-mtcF8V5owN7N2bZTCTHAYCn5_FHTt_9VwslmE6Hxd28a3q2hQSlSEmcx-tgqRa5WhFINVvVuHD8XY-Wq7EYLZgDJbUGYDyiCZDaghePL1nm3skwy9Ad8pkAw</recordid><startdate>20131106</startdate><enddate>20131106</enddate><creator>Dupin, Isabelle</creator><creator>Dahan, Maxime</creator><creator>Studer, Vincent</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131106</creationdate><title>Investigating axonal guidance with microdevice-based approaches</title><author>Dupin, Isabelle ; Dahan, Maxime ; Studer, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-17f85a7bb3a2bf423105c0da22e3c3ee63970b7e801d36755794053316fd9b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Axons - physiology</topic><topic>Cell Movement - physiology</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>Growth Cones - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurosciences - methods</topic><topic>Signal Transduction - physiology</topic><topic>Toolbox</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dupin, Isabelle</creatorcontrib><creatorcontrib>Dahan, Maxime</creatorcontrib><creatorcontrib>Studer, Vincent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dupin, Isabelle</au><au>Dahan, Maxime</au><au>Studer, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating axonal guidance with microdevice-based approaches</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-11-06</date><risdate>2013</risdate><volume>33</volume><issue>45</issue><spage>17647</spage><epage>17655</epage><pages>17647-17655</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation of microfabrication techniques in cell biology now enables a precise control of the extracellular physical and chemical environment of cultured cells. However, microtechnology is only beginning to be applied in the field of axon guidance due to specific requirements of neuronal cultures. Here we review microdevices specifically designed to study axonal guidance and compare them with the conventional assays used to probe gradient sensing in cell biology. We also discuss how innovative microdevice-based approaches will enable the investigation of important systems-level questions on the gradient sensing properties of nerve cells, such as the sensitivity and robustness in the detection of directional signals or the combinatorial response to multiple cues.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>24198357</pmid><doi>10.1523/JNEUROSCI.3277-13.2013</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2013-11, Vol.33 (45), p.17647-17655
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618420
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Axons - physiology
Cell Movement - physiology
Cells, Cultured
Coculture Techniques
Growth Cones - physiology
Neurons - cytology
Neurons - physiology
Neurosciences - methods
Signal Transduction - physiology
Toolbox
title Investigating axonal guidance with microdevice-based approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20axonal%20guidance%20with%20microdevice-based%20approaches&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Dupin,%20Isabelle&rft.date=2013-11-06&rft.volume=33&rft.issue=45&rft.spage=17647&rft.epage=17655&rft.pages=17647-17655&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3277-13.2013&rft_dat=%3Cproquest_pubme%3E1551631858%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449768154&rft_id=info:pmid/24198357&rfr_iscdi=true