Investigating axonal guidance with microdevice-based approaches
The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space a...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2013-11, Vol.33 (45), p.17647-17655 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17655 |
---|---|
container_issue | 45 |
container_start_page | 17647 |
container_title | The Journal of neuroscience |
container_volume | 33 |
creator | Dupin, Isabelle Dahan, Maxime Studer, Vincent |
description | The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation of microfabrication techniques in cell biology now enables a precise control of the extracellular physical and chemical environment of cultured cells. However, microtechnology is only beginning to be applied in the field of axon guidance due to specific requirements of neuronal cultures. Here we review microdevices specifically designed to study axonal guidance and compare them with the conventional assays used to probe gradient sensing in cell biology. We also discuss how innovative microdevice-based approaches will enable the investigation of important systems-level questions on the gradient sensing properties of nerve cells, such as the sensitivity and robustness in the detection of directional signals or the combinatorial response to multiple cues. |
doi_str_mv | 10.1523/JNEUROSCI.3277-13.2013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551631858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-17f85a7bb3a2bf423105c0da22e3c3ee63970b7e801d36755794053316fd9b823</originalsourceid><addsrcrecordid>eNqFkclO40AQhltoEITlFZCPc3Go6urFvsxoFLEEIZBYzq12u500cuyM2wnw9jgCIjhxqsO_qKo-xk4Qxig5nV7dnD3e3d5PpmPiWqdIYw5IO2w0qHnKBeAvNgKuIVVCi312EOMTAGhAvcf2ucA8I6lH7O-0WfvYh5ntQzNL7Evb2DqZrUJpG-eT59DPk0VwXVv6dXA-LWz0ZWKXy661bu7jEdutbB398cc8ZI_nZw-Ty_T69mI6-XedOgnQp6irTFpdFGR5UQlOCNJBaTn35Mh7RbmGQvsMsCSlpdS5AEmEqirzIuN0yP689y5XxcKXzjd9Z2uz7MLCdq-mtcF8V5owN7N2bZTCTHAYCn5_FHTt_9VwslmE6Hxd28a3q2hQSlSEmcx-tgqRa5WhFINVvVuHD8XY-Wq7EYLZgDJbUGYDyiCZDaghePL1nm3skwy9Ad8pkAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449768154</pqid></control><display><type>article</type><title>Investigating axonal guidance with microdevice-based approaches</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Dupin, Isabelle ; Dahan, Maxime ; Studer, Vincent</creator><creatorcontrib>Dupin, Isabelle ; Dahan, Maxime ; Studer, Vincent</creatorcontrib><description>The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation of microfabrication techniques in cell biology now enables a precise control of the extracellular physical and chemical environment of cultured cells. However, microtechnology is only beginning to be applied in the field of axon guidance due to specific requirements of neuronal cultures. Here we review microdevices specifically designed to study axonal guidance and compare them with the conventional assays used to probe gradient sensing in cell biology. We also discuss how innovative microdevice-based approaches will enable the investigation of important systems-level questions on the gradient sensing properties of nerve cells, such as the sensitivity and robustness in the detection of directional signals or the combinatorial response to multiple cues.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3277-13.2013</identifier><identifier>PMID: 24198357</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Axons - physiology ; Cell Movement - physiology ; Cells, Cultured ; Coculture Techniques ; Growth Cones - physiology ; Neurons - cytology ; Neurons - physiology ; Neurosciences - methods ; Signal Transduction - physiology ; Toolbox</subject><ispartof>The Journal of neuroscience, 2013-11, Vol.33 (45), p.17647-17655</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/3317647-09$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-17f85a7bb3a2bf423105c0da22e3c3ee63970b7e801d36755794053316fd9b823</citedby><cites>FETCH-LOGICAL-c500t-17f85a7bb3a2bf423105c0da22e3c3ee63970b7e801d36755794053316fd9b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618420/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618420/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24198357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dupin, Isabelle</creatorcontrib><creatorcontrib>Dahan, Maxime</creatorcontrib><creatorcontrib>Studer, Vincent</creatorcontrib><title>Investigating axonal guidance with microdevice-based approaches</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation of microfabrication techniques in cell biology now enables a precise control of the extracellular physical and chemical environment of cultured cells. However, microtechnology is only beginning to be applied in the field of axon guidance due to specific requirements of neuronal cultures. Here we review microdevices specifically designed to study axonal guidance and compare them with the conventional assays used to probe gradient sensing in cell biology. We also discuss how innovative microdevice-based approaches will enable the investigation of important systems-level questions on the gradient sensing properties of nerve cells, such as the sensitivity and robustness in the detection of directional signals or the combinatorial response to multiple cues.</description><subject>Animals</subject><subject>Axons - physiology</subject><subject>Cell Movement - physiology</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>Growth Cones - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurosciences - methods</subject><subject>Signal Transduction - physiology</subject><subject>Toolbox</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkclO40AQhltoEITlFZCPc3Go6urFvsxoFLEEIZBYzq12u500cuyM2wnw9jgCIjhxqsO_qKo-xk4Qxig5nV7dnD3e3d5PpmPiWqdIYw5IO2w0qHnKBeAvNgKuIVVCi312EOMTAGhAvcf2ucA8I6lH7O-0WfvYh5ntQzNL7Evb2DqZrUJpG-eT59DPk0VwXVv6dXA-LWz0ZWKXy661bu7jEdutbB398cc8ZI_nZw-Ty_T69mI6-XedOgnQp6irTFpdFGR5UQlOCNJBaTn35Mh7RbmGQvsMsCSlpdS5AEmEqirzIuN0yP689y5XxcKXzjd9Z2uz7MLCdq-mtcF8V5owN7N2bZTCTHAYCn5_FHTt_9VwslmE6Hxd28a3q2hQSlSEmcx-tgqRa5WhFINVvVuHD8XY-Wq7EYLZgDJbUGYDyiCZDaghePL1nm3skwy9Ad8pkAw</recordid><startdate>20131106</startdate><enddate>20131106</enddate><creator>Dupin, Isabelle</creator><creator>Dahan, Maxime</creator><creator>Studer, Vincent</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131106</creationdate><title>Investigating axonal guidance with microdevice-based approaches</title><author>Dupin, Isabelle ; Dahan, Maxime ; Studer, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-17f85a7bb3a2bf423105c0da22e3c3ee63970b7e801d36755794053316fd9b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Axons - physiology</topic><topic>Cell Movement - physiology</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>Growth Cones - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurosciences - methods</topic><topic>Signal Transduction - physiology</topic><topic>Toolbox</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dupin, Isabelle</creatorcontrib><creatorcontrib>Dahan, Maxime</creatorcontrib><creatorcontrib>Studer, Vincent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dupin, Isabelle</au><au>Dahan, Maxime</au><au>Studer, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating axonal guidance with microdevice-based approaches</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-11-06</date><risdate>2013</risdate><volume>33</volume><issue>45</issue><spage>17647</spage><epage>17655</epage><pages>17647-17655</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>The precise wiring of the nervous system relies on processes by which axons navigate in a complex environment and are guided by a concerted action of attractive and repulsive factors to reach their target. Investigating these guidance processes depends critically on our ability to control in space and time the microenvironment of neurons. The implementation of microfabrication techniques in cell biology now enables a precise control of the extracellular physical and chemical environment of cultured cells. However, microtechnology is only beginning to be applied in the field of axon guidance due to specific requirements of neuronal cultures. Here we review microdevices specifically designed to study axonal guidance and compare them with the conventional assays used to probe gradient sensing in cell biology. We also discuss how innovative microdevice-based approaches will enable the investigation of important systems-level questions on the gradient sensing properties of nerve cells, such as the sensitivity and robustness in the detection of directional signals or the combinatorial response to multiple cues.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>24198357</pmid><doi>10.1523/JNEUROSCI.3277-13.2013</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2013-11, Vol.33 (45), p.17647-17655 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618420 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Axons - physiology Cell Movement - physiology Cells, Cultured Coculture Techniques Growth Cones - physiology Neurons - cytology Neurons - physiology Neurosciences - methods Signal Transduction - physiology Toolbox |
title | Investigating axonal guidance with microdevice-based approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20axonal%20guidance%20with%20microdevice-based%20approaches&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Dupin,%20Isabelle&rft.date=2013-11-06&rft.volume=33&rft.issue=45&rft.spage=17647&rft.epage=17655&rft.pages=17647-17655&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3277-13.2013&rft_dat=%3Cproquest_pubme%3E1551631858%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449768154&rft_id=info:pmid/24198357&rfr_iscdi=true |