Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response

Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in biomedical engineering 2019-05, Vol.35 (5), p.e3178-n/a
Hauptverfasser: Rodríguez‐Cantano, Rocío, Sundnes, Joakim, Rognes, Marie E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page e3178
container_title International journal for numerical methods in biomedical engineering
container_volume 35
creator Rodríguez‐Cantano, Rocío
Sundnes, Joakim
Rognes, Marie E.
description Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and sensitivity analysis are important parts of such an assessment. In this study, we apply UQ in computational heart mechanics to study uncertainty both in material parameters characterizing global myocardial stiffness and in the local muscle fiber orientation that governs tissue anisotropy. The uncertainty analysis is performed using the polynomial chaos expansion (PCE) method, which is a nonintrusive meta‐modeling technique that surrogates the original computational model with a series of orthonormal polynomials over the random input parameter space. In addition, in order to study variability in the muscle fiber architecture, we model the uncertainty in orientation of the fiber field as an approximated random field using a truncated Karhunen‐Loéve expansion. The results from the UQ and sensitivity analysis identify clear differences in the impact of various material parameters on global output quantities. Furthermore, our analysis of random field variations in the fiber architecture demonstrate a substantial impact of fiber angle variations on the selected outputs, highlighting the need for accurate assignment of fiber orientation in computational heart mechanics models. Sample of random fiber orientation field generated by a Gaussian random field with a standard deviation σKL  =  0.5 radians and correlation length equals 3 cm (left panel). This loss of the helical arrangements of the myofiber orientation has a substantial impact on global mechanical properties of the ventricle, as is shown for the inner cavity volume (right panel).
doi_str_mv 10.1002/cnm.3178
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220545925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4388-a3c74e8806bb02f80f0122e2a6b97679222d004da230895a5179b0e191747e213</originalsourceid><addsrcrecordid>eNp1kV1vFCEUhonR2KY28RcYEm-8mXqAmWG4MTEbrSZVb-w1YZiDpZmBFdhtNv552W5dPxK5gYSH57zkJeQ5gwsGwF_bsFwIJodH5JRDC41UrXx8PAt1Qs5zvoW6uFJKiqfkREAvuGTslPy4DhZTMT6UHfWBWpMmbyxddtH5ERONyWMopvgYqAkTzcU7FzBnzHSKiw-mIC03SLcmeTP62VdRdHRGV-i2Pk3ezkgndDEtB03CvI4h4zPyxJk54_nDfkau37_7uvrQXH25_Lh6e9XYVgxDY4SVLQ4D9OMI3A3ggHGO3PSjkr1UnPMJoJ0MFzCoznRMqhGQKSZbiZyJM_Lm4F1vxgUnuw9lZr1OfjFpp6Px-u-b4G_0t7jVfc8G1osqePUgSPH7BnPRi88W59kEjJuseZ0oZMv5Hn35D3obNynU7-maE7q2U7z7LbQp5pzQHcMw0PtSdS1V70ut6Is_wx_BXxVWoDkAd37G3X9FevX5073wJ0hkrNk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220545925</pqid></control><display><type>article</type><title>Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rodríguez‐Cantano, Rocío ; Sundnes, Joakim ; Rognes, Marie E.</creator><creatorcontrib>Rodríguez‐Cantano, Rocío ; Sundnes, Joakim ; Rognes, Marie E.</creatorcontrib><description>Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and sensitivity analysis are important parts of such an assessment. In this study, we apply UQ in computational heart mechanics to study uncertainty both in material parameters characterizing global myocardial stiffness and in the local muscle fiber orientation that governs tissue anisotropy. The uncertainty analysis is performed using the polynomial chaos expansion (PCE) method, which is a nonintrusive meta‐modeling technique that surrogates the original computational model with a series of orthonormal polynomials over the random input parameter space. In addition, in order to study variability in the muscle fiber architecture, we model the uncertainty in orientation of the fiber field as an approximated random field using a truncated Karhunen‐Loéve expansion. The results from the UQ and sensitivity analysis identify clear differences in the impact of various material parameters on global output quantities. Furthermore, our analysis of random field variations in the fiber architecture demonstrate a substantial impact of fiber angle variations on the selected outputs, highlighting the need for accurate assignment of fiber orientation in computational heart mechanics models. Sample of random fiber orientation field generated by a Gaussian random field with a standard deviation σKL  =  0.5 radians and correlation length equals 3 cm (left panel). This loss of the helical arrangements of the myofiber orientation has a substantial impact on global mechanical properties of the ventricle, as is shown for the inner cavity volume (right panel).</description><identifier>ISSN: 2040-7939</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.3178</identifier><identifier>PMID: 30632711</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Application ; Applications ; Architecture ; Biomedical materials ; Calibration ; cardiac mechanics ; Computation ; Computer applications ; Decision making ; Deformation ; Fiber orientation ; Fields (mathematics) ; Heart ; Heart Ventricles - cytology ; Heart Ventricles - physiopathology ; Humans ; Karhunen‐Loéve expansion ; Mathematical models ; Mechanics (physics) ; Models, Cardiovascular ; Monte Carlo Method ; Muscles ; Myocytes, Cardiac ; Parameter identification ; Parameter uncertainty ; polynomial chaos ; Polynomials ; quasi‐Monte Carlo ; Reliability analysis ; Reliability aspects ; Reproducibility of Results ; Sensitivity analysis ; Stiffness ; Uncertainty ; Uncertainty analysis ; uncertainty quantification ; Variability ; Ventricle ; Ventricular Function</subject><ispartof>International journal for numerical methods in biomedical engineering, 2019-05, Vol.35 (5), p.e3178-n/a</ispartof><rights>2019 The Authors International Journal for Numerical Methods in Biomedical Engineering published by John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4388-a3c74e8806bb02f80f0122e2a6b97679222d004da230895a5179b0e191747e213</citedby><cites>FETCH-LOGICAL-c4388-a3c74e8806bb02f80f0122e2a6b97679222d004da230895a5179b0e191747e213</cites><orcidid>0000-0002-4046-9036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.3178$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.3178$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30632711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez‐Cantano, Rocío</creatorcontrib><creatorcontrib>Sundnes, Joakim</creatorcontrib><creatorcontrib>Rognes, Marie E.</creatorcontrib><title>Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int J Numer Method Biomed Eng</addtitle><description>Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and sensitivity analysis are important parts of such an assessment. In this study, we apply UQ in computational heart mechanics to study uncertainty both in material parameters characterizing global myocardial stiffness and in the local muscle fiber orientation that governs tissue anisotropy. The uncertainty analysis is performed using the polynomial chaos expansion (PCE) method, which is a nonintrusive meta‐modeling technique that surrogates the original computational model with a series of orthonormal polynomials over the random input parameter space. In addition, in order to study variability in the muscle fiber architecture, we model the uncertainty in orientation of the fiber field as an approximated random field using a truncated Karhunen‐Loéve expansion. The results from the UQ and sensitivity analysis identify clear differences in the impact of various material parameters on global output quantities. Furthermore, our analysis of random field variations in the fiber architecture demonstrate a substantial impact of fiber angle variations on the selected outputs, highlighting the need for accurate assignment of fiber orientation in computational heart mechanics models. Sample of random fiber orientation field generated by a Gaussian random field with a standard deviation σKL  =  0.5 radians and correlation length equals 3 cm (left panel). This loss of the helical arrangements of the myofiber orientation has a substantial impact on global mechanical properties of the ventricle, as is shown for the inner cavity volume (right panel).</description><subject>Anisotropy</subject><subject>Application</subject><subject>Applications</subject><subject>Architecture</subject><subject>Biomedical materials</subject><subject>Calibration</subject><subject>cardiac mechanics</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Decision making</subject><subject>Deformation</subject><subject>Fiber orientation</subject><subject>Fields (mathematics)</subject><subject>Heart</subject><subject>Heart Ventricles - cytology</subject><subject>Heart Ventricles - physiopathology</subject><subject>Humans</subject><subject>Karhunen‐Loéve expansion</subject><subject>Mathematical models</subject><subject>Mechanics (physics)</subject><subject>Models, Cardiovascular</subject><subject>Monte Carlo Method</subject><subject>Muscles</subject><subject>Myocytes, Cardiac</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>polynomial chaos</subject><subject>Polynomials</subject><subject>quasi‐Monte Carlo</subject><subject>Reliability analysis</subject><subject>Reliability aspects</subject><subject>Reproducibility of Results</subject><subject>Sensitivity analysis</subject><subject>Stiffness</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>uncertainty quantification</subject><subject>Variability</subject><subject>Ventricle</subject><subject>Ventricular Function</subject><issn>2040-7939</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV1vFCEUhonR2KY28RcYEm-8mXqAmWG4MTEbrSZVb-w1YZiDpZmBFdhtNv552W5dPxK5gYSH57zkJeQ5gwsGwF_bsFwIJodH5JRDC41UrXx8PAt1Qs5zvoW6uFJKiqfkREAvuGTslPy4DhZTMT6UHfWBWpMmbyxddtH5ERONyWMopvgYqAkTzcU7FzBnzHSKiw-mIC03SLcmeTP62VdRdHRGV-i2Pk3ezkgndDEtB03CvI4h4zPyxJk54_nDfkau37_7uvrQXH25_Lh6e9XYVgxDY4SVLQ4D9OMI3A3ggHGO3PSjkr1UnPMJoJ0MFzCoznRMqhGQKSZbiZyJM_Lm4F1vxgUnuw9lZr1OfjFpp6Px-u-b4G_0t7jVfc8G1osqePUgSPH7BnPRi88W59kEjJuseZ0oZMv5Hn35D3obNynU7-maE7q2U7z7LbQp5pzQHcMw0PtSdS1V70ut6Is_wx_BXxVWoDkAd37G3X9FevX5073wJ0hkrNk</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Rodríguez‐Cantano, Rocío</creator><creator>Sundnes, Joakim</creator><creator>Rognes, Marie E.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4046-9036</orcidid></search><sort><creationdate>201905</creationdate><title>Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response</title><author>Rodríguez‐Cantano, Rocío ; Sundnes, Joakim ; Rognes, Marie E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4388-a3c74e8806bb02f80f0122e2a6b97679222d004da230895a5179b0e191747e213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Application</topic><topic>Applications</topic><topic>Architecture</topic><topic>Biomedical materials</topic><topic>Calibration</topic><topic>cardiac mechanics</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Decision making</topic><topic>Deformation</topic><topic>Fiber orientation</topic><topic>Fields (mathematics)</topic><topic>Heart</topic><topic>Heart Ventricles - cytology</topic><topic>Heart Ventricles - physiopathology</topic><topic>Humans</topic><topic>Karhunen‐Loéve expansion</topic><topic>Mathematical models</topic><topic>Mechanics (physics)</topic><topic>Models, Cardiovascular</topic><topic>Monte Carlo Method</topic><topic>Muscles</topic><topic>Myocytes, Cardiac</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>polynomial chaos</topic><topic>Polynomials</topic><topic>quasi‐Monte Carlo</topic><topic>Reliability analysis</topic><topic>Reliability aspects</topic><topic>Reproducibility of Results</topic><topic>Sensitivity analysis</topic><topic>Stiffness</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>uncertainty quantification</topic><topic>Variability</topic><topic>Ventricle</topic><topic>Ventricular Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez‐Cantano, Rocío</creatorcontrib><creatorcontrib>Sundnes, Joakim</creatorcontrib><creatorcontrib>Rognes, Marie E.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez‐Cantano, Rocío</au><au>Sundnes, Joakim</au><au>Rognes, Marie E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int J Numer Method Biomed Eng</addtitle><date>2019-05</date><risdate>2019</risdate><volume>35</volume><issue>5</issue><spage>e3178</spage><epage>n/a</epage><pages>e3178-n/a</pages><issn>2040-7939</issn><eissn>2040-7947</eissn><abstract>Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and sensitivity analysis are important parts of such an assessment. In this study, we apply UQ in computational heart mechanics to study uncertainty both in material parameters characterizing global myocardial stiffness and in the local muscle fiber orientation that governs tissue anisotropy. The uncertainty analysis is performed using the polynomial chaos expansion (PCE) method, which is a nonintrusive meta‐modeling technique that surrogates the original computational model with a series of orthonormal polynomials over the random input parameter space. In addition, in order to study variability in the muscle fiber architecture, we model the uncertainty in orientation of the fiber field as an approximated random field using a truncated Karhunen‐Loéve expansion. The results from the UQ and sensitivity analysis identify clear differences in the impact of various material parameters on global output quantities. Furthermore, our analysis of random field variations in the fiber architecture demonstrate a substantial impact of fiber angle variations on the selected outputs, highlighting the need for accurate assignment of fiber orientation in computational heart mechanics models. Sample of random fiber orientation field generated by a Gaussian random field with a standard deviation σKL  =  0.5 radians and correlation length equals 3 cm (left panel). This loss of the helical arrangements of the myofiber orientation has a substantial impact on global mechanical properties of the ventricle, as is shown for the inner cavity volume (right panel).</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30632711</pmid><doi>10.1002/cnm.3178</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4046-9036</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-7939
ispartof International journal for numerical methods in biomedical engineering, 2019-05, Vol.35 (5), p.e3178-n/a
issn 2040-7939
2040-7947
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618163
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Anisotropy
Application
Applications
Architecture
Biomedical materials
Calibration
cardiac mechanics
Computation
Computer applications
Decision making
Deformation
Fiber orientation
Fields (mathematics)
Heart
Heart Ventricles - cytology
Heart Ventricles - physiopathology
Humans
Karhunen‐Loéve expansion
Mathematical models
Mechanics (physics)
Models, Cardiovascular
Monte Carlo Method
Muscles
Myocytes, Cardiac
Parameter identification
Parameter uncertainty
polynomial chaos
Polynomials
quasi‐Monte Carlo
Reliability analysis
Reliability aspects
Reproducibility of Results
Sensitivity analysis
Stiffness
Uncertainty
Uncertainty analysis
uncertainty quantification
Variability
Ventricle
Ventricular Function
title Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20in%20cardiac%20myofiber%20orientation%20and%20stiffnesses%20dominate%20the%20variability%20of%20left%20ventricle%20deformation%20response&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Rodr%C3%ADguez%E2%80%90Cantano,%20Roc%C3%ADo&rft.date=2019-05&rft.volume=35&rft.issue=5&rft.spage=e3178&rft.epage=n/a&rft.pages=e3178-n/a&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.3178&rft_dat=%3Cproquest_pubme%3E2220545925%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220545925&rft_id=info:pmid/30632711&rfr_iscdi=true