Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response
Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and s...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in biomedical engineering 2019-05, Vol.35 (5), p.e3178-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | e3178 |
container_title | International journal for numerical methods in biomedical engineering |
container_volume | 35 |
creator | Rodríguez‐Cantano, Rocío Sundnes, Joakim Rognes, Marie E. |
description | Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and sensitivity analysis are important parts of such an assessment. In this study, we apply UQ in computational heart mechanics to study uncertainty both in material parameters characterizing global myocardial stiffness and in the local muscle fiber orientation that governs tissue anisotropy. The uncertainty analysis is performed using the polynomial chaos expansion (PCE) method, which is a nonintrusive meta‐modeling technique that surrogates the original computational model with a series of orthonormal polynomials over the random input parameter space. In addition, in order to study variability in the muscle fiber architecture, we model the uncertainty in orientation of the fiber field as an approximated random field using a truncated Karhunen‐Loéve expansion. The results from the UQ and sensitivity analysis identify clear differences in the impact of various material parameters on global output quantities. Furthermore, our analysis of random field variations in the fiber architecture demonstrate a substantial impact of fiber angle variations on the selected outputs, highlighting the need for accurate assignment of fiber orientation in computational heart mechanics models.
Sample of random fiber orientation field generated by a Gaussian random field with a standard deviation σKL = 0.5 radians and correlation length equals 3 cm (left panel). This loss of the helical arrangements of the myofiber orientation has a substantial impact on global mechanical properties of the ventricle, as is shown for the inner cavity volume (right panel). |
doi_str_mv | 10.1002/cnm.3178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220545925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4388-a3c74e8806bb02f80f0122e2a6b97679222d004da230895a5179b0e191747e213</originalsourceid><addsrcrecordid>eNp1kV1vFCEUhonR2KY28RcYEm-8mXqAmWG4MTEbrSZVb-w1YZiDpZmBFdhtNv552W5dPxK5gYSH57zkJeQ5gwsGwF_bsFwIJodH5JRDC41UrXx8PAt1Qs5zvoW6uFJKiqfkREAvuGTslPy4DhZTMT6UHfWBWpMmbyxddtH5ERONyWMopvgYqAkTzcU7FzBnzHSKiw-mIC03SLcmeTP62VdRdHRGV-i2Pk3ezkgndDEtB03CvI4h4zPyxJk54_nDfkau37_7uvrQXH25_Lh6e9XYVgxDY4SVLQ4D9OMI3A3ggHGO3PSjkr1UnPMJoJ0MFzCoznRMqhGQKSZbiZyJM_Lm4F1vxgUnuw9lZr1OfjFpp6Px-u-b4G_0t7jVfc8G1osqePUgSPH7BnPRi88W59kEjJuseZ0oZMv5Hn35D3obNynU7-maE7q2U7z7LbQp5pzQHcMw0PtSdS1V70ut6Is_wx_BXxVWoDkAd37G3X9FevX5073wJ0hkrNk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220545925</pqid></control><display><type>article</type><title>Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rodríguez‐Cantano, Rocío ; Sundnes, Joakim ; Rognes, Marie E.</creator><creatorcontrib>Rodríguez‐Cantano, Rocío ; Sundnes, Joakim ; Rognes, Marie E.</creatorcontrib><description>Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and sensitivity analysis are important parts of such an assessment. In this study, we apply UQ in computational heart mechanics to study uncertainty both in material parameters characterizing global myocardial stiffness and in the local muscle fiber orientation that governs tissue anisotropy. The uncertainty analysis is performed using the polynomial chaos expansion (PCE) method, which is a nonintrusive meta‐modeling technique that surrogates the original computational model with a series of orthonormal polynomials over the random input parameter space. In addition, in order to study variability in the muscle fiber architecture, we model the uncertainty in orientation of the fiber field as an approximated random field using a truncated Karhunen‐Loéve expansion. The results from the UQ and sensitivity analysis identify clear differences in the impact of various material parameters on global output quantities. Furthermore, our analysis of random field variations in the fiber architecture demonstrate a substantial impact of fiber angle variations on the selected outputs, highlighting the need for accurate assignment of fiber orientation in computational heart mechanics models.
Sample of random fiber orientation field generated by a Gaussian random field with a standard deviation σKL = 0.5 radians and correlation length equals 3 cm (left panel). This loss of the helical arrangements of the myofiber orientation has a substantial impact on global mechanical properties of the ventricle, as is shown for the inner cavity volume (right panel).</description><identifier>ISSN: 2040-7939</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.3178</identifier><identifier>PMID: 30632711</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Application ; Applications ; Architecture ; Biomedical materials ; Calibration ; cardiac mechanics ; Computation ; Computer applications ; Decision making ; Deformation ; Fiber orientation ; Fields (mathematics) ; Heart ; Heart Ventricles - cytology ; Heart Ventricles - physiopathology ; Humans ; Karhunen‐Loéve expansion ; Mathematical models ; Mechanics (physics) ; Models, Cardiovascular ; Monte Carlo Method ; Muscles ; Myocytes, Cardiac ; Parameter identification ; Parameter uncertainty ; polynomial chaos ; Polynomials ; quasi‐Monte Carlo ; Reliability analysis ; Reliability aspects ; Reproducibility of Results ; Sensitivity analysis ; Stiffness ; Uncertainty ; Uncertainty analysis ; uncertainty quantification ; Variability ; Ventricle ; Ventricular Function</subject><ispartof>International journal for numerical methods in biomedical engineering, 2019-05, Vol.35 (5), p.e3178-n/a</ispartof><rights>2019 The Authors International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons, Ltd.</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4388-a3c74e8806bb02f80f0122e2a6b97679222d004da230895a5179b0e191747e213</citedby><cites>FETCH-LOGICAL-c4388-a3c74e8806bb02f80f0122e2a6b97679222d004da230895a5179b0e191747e213</cites><orcidid>0000-0002-4046-9036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.3178$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.3178$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30632711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez‐Cantano, Rocío</creatorcontrib><creatorcontrib>Sundnes, Joakim</creatorcontrib><creatorcontrib>Rognes, Marie E.</creatorcontrib><title>Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int J Numer Method Biomed Eng</addtitle><description>Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and sensitivity analysis are important parts of such an assessment. In this study, we apply UQ in computational heart mechanics to study uncertainty both in material parameters characterizing global myocardial stiffness and in the local muscle fiber orientation that governs tissue anisotropy. The uncertainty analysis is performed using the polynomial chaos expansion (PCE) method, which is a nonintrusive meta‐modeling technique that surrogates the original computational model with a series of orthonormal polynomials over the random input parameter space. In addition, in order to study variability in the muscle fiber architecture, we model the uncertainty in orientation of the fiber field as an approximated random field using a truncated Karhunen‐Loéve expansion. The results from the UQ and sensitivity analysis identify clear differences in the impact of various material parameters on global output quantities. Furthermore, our analysis of random field variations in the fiber architecture demonstrate a substantial impact of fiber angle variations on the selected outputs, highlighting the need for accurate assignment of fiber orientation in computational heart mechanics models.
Sample of random fiber orientation field generated by a Gaussian random field with a standard deviation σKL = 0.5 radians and correlation length equals 3 cm (left panel). This loss of the helical arrangements of the myofiber orientation has a substantial impact on global mechanical properties of the ventricle, as is shown for the inner cavity volume (right panel).</description><subject>Anisotropy</subject><subject>Application</subject><subject>Applications</subject><subject>Architecture</subject><subject>Biomedical materials</subject><subject>Calibration</subject><subject>cardiac mechanics</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Decision making</subject><subject>Deformation</subject><subject>Fiber orientation</subject><subject>Fields (mathematics)</subject><subject>Heart</subject><subject>Heart Ventricles - cytology</subject><subject>Heart Ventricles - physiopathology</subject><subject>Humans</subject><subject>Karhunen‐Loéve expansion</subject><subject>Mathematical models</subject><subject>Mechanics (physics)</subject><subject>Models, Cardiovascular</subject><subject>Monte Carlo Method</subject><subject>Muscles</subject><subject>Myocytes, Cardiac</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>polynomial chaos</subject><subject>Polynomials</subject><subject>quasi‐Monte Carlo</subject><subject>Reliability analysis</subject><subject>Reliability aspects</subject><subject>Reproducibility of Results</subject><subject>Sensitivity analysis</subject><subject>Stiffness</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>uncertainty quantification</subject><subject>Variability</subject><subject>Ventricle</subject><subject>Ventricular Function</subject><issn>2040-7939</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV1vFCEUhonR2KY28RcYEm-8mXqAmWG4MTEbrSZVb-w1YZiDpZmBFdhtNv552W5dPxK5gYSH57zkJeQ5gwsGwF_bsFwIJodH5JRDC41UrXx8PAt1Qs5zvoW6uFJKiqfkREAvuGTslPy4DhZTMT6UHfWBWpMmbyxddtH5ERONyWMopvgYqAkTzcU7FzBnzHSKiw-mIC03SLcmeTP62VdRdHRGV-i2Pk3ezkgndDEtB03CvI4h4zPyxJk54_nDfkau37_7uvrQXH25_Lh6e9XYVgxDY4SVLQ4D9OMI3A3ggHGO3PSjkr1UnPMJoJ0MFzCoznRMqhGQKSZbiZyJM_Lm4F1vxgUnuw9lZr1OfjFpp6Px-u-b4G_0t7jVfc8G1osqePUgSPH7BnPRi88W59kEjJuseZ0oZMv5Hn35D3obNynU7-maE7q2U7z7LbQp5pzQHcMw0PtSdS1V70ut6Is_wx_BXxVWoDkAd37G3X9FevX5073wJ0hkrNk</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Rodríguez‐Cantano, Rocío</creator><creator>Sundnes, Joakim</creator><creator>Rognes, Marie E.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4046-9036</orcidid></search><sort><creationdate>201905</creationdate><title>Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response</title><author>Rodríguez‐Cantano, Rocío ; Sundnes, Joakim ; Rognes, Marie E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4388-a3c74e8806bb02f80f0122e2a6b97679222d004da230895a5179b0e191747e213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Application</topic><topic>Applications</topic><topic>Architecture</topic><topic>Biomedical materials</topic><topic>Calibration</topic><topic>cardiac mechanics</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Decision making</topic><topic>Deformation</topic><topic>Fiber orientation</topic><topic>Fields (mathematics)</topic><topic>Heart</topic><topic>Heart Ventricles - cytology</topic><topic>Heart Ventricles - physiopathology</topic><topic>Humans</topic><topic>Karhunen‐Loéve expansion</topic><topic>Mathematical models</topic><topic>Mechanics (physics)</topic><topic>Models, Cardiovascular</topic><topic>Monte Carlo Method</topic><topic>Muscles</topic><topic>Myocytes, Cardiac</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>polynomial chaos</topic><topic>Polynomials</topic><topic>quasi‐Monte Carlo</topic><topic>Reliability analysis</topic><topic>Reliability aspects</topic><topic>Reproducibility of Results</topic><topic>Sensitivity analysis</topic><topic>Stiffness</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>uncertainty quantification</topic><topic>Variability</topic><topic>Ventricle</topic><topic>Ventricular Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez‐Cantano, Rocío</creatorcontrib><creatorcontrib>Sundnes, Joakim</creatorcontrib><creatorcontrib>Rognes, Marie E.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez‐Cantano, Rocío</au><au>Sundnes, Joakim</au><au>Rognes, Marie E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int J Numer Method Biomed Eng</addtitle><date>2019-05</date><risdate>2019</risdate><volume>35</volume><issue>5</issue><spage>e3178</spage><epage>n/a</epage><pages>e3178-n/a</pages><issn>2040-7939</issn><eissn>2040-7947</eissn><abstract>Computational cardiac modelling is a mature area of biomedical computing and is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and sensitivity analysis are important parts of such an assessment. In this study, we apply UQ in computational heart mechanics to study uncertainty both in material parameters characterizing global myocardial stiffness and in the local muscle fiber orientation that governs tissue anisotropy. The uncertainty analysis is performed using the polynomial chaos expansion (PCE) method, which is a nonintrusive meta‐modeling technique that surrogates the original computational model with a series of orthonormal polynomials over the random input parameter space. In addition, in order to study variability in the muscle fiber architecture, we model the uncertainty in orientation of the fiber field as an approximated random field using a truncated Karhunen‐Loéve expansion. The results from the UQ and sensitivity analysis identify clear differences in the impact of various material parameters on global output quantities. Furthermore, our analysis of random field variations in the fiber architecture demonstrate a substantial impact of fiber angle variations on the selected outputs, highlighting the need for accurate assignment of fiber orientation in computational heart mechanics models.
Sample of random fiber orientation field generated by a Gaussian random field with a standard deviation σKL = 0.5 radians and correlation length equals 3 cm (left panel). This loss of the helical arrangements of the myofiber orientation has a substantial impact on global mechanical properties of the ventricle, as is shown for the inner cavity volume (right panel).</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30632711</pmid><doi>10.1002/cnm.3178</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4046-9036</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-7939 |
ispartof | International journal for numerical methods in biomedical engineering, 2019-05, Vol.35 (5), p.e3178-n/a |
issn | 2040-7939 2040-7947 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618163 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Anisotropy Application Applications Architecture Biomedical materials Calibration cardiac mechanics Computation Computer applications Decision making Deformation Fiber orientation Fields (mathematics) Heart Heart Ventricles - cytology Heart Ventricles - physiopathology Humans Karhunen‐Loéve expansion Mathematical models Mechanics (physics) Models, Cardiovascular Monte Carlo Method Muscles Myocytes, Cardiac Parameter identification Parameter uncertainty polynomial chaos Polynomials quasi‐Monte Carlo Reliability analysis Reliability aspects Reproducibility of Results Sensitivity analysis Stiffness Uncertainty Uncertainty analysis uncertainty quantification Variability Ventricle Ventricular Function |
title | Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20in%20cardiac%20myofiber%20orientation%20and%20stiffnesses%20dominate%20the%20variability%20of%20left%20ventricle%20deformation%20response&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Rodr%C3%ADguez%E2%80%90Cantano,%20Roc%C3%ADo&rft.date=2019-05&rft.volume=35&rft.issue=5&rft.spage=e3178&rft.epage=n/a&rft.pages=e3178-n/a&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.3178&rft_dat=%3Cproquest_pubme%3E2220545925%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220545925&rft_id=info:pmid/30632711&rfr_iscdi=true |