Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations
Background Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive re...
Gespeichert in:
Veröffentlicht in: | Helicobacter (Cambridge, Mass.) Mass.), 2019-08, Vol.24 (4), p.e12587-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e12587 |
container_title | Helicobacter (Cambridge, Mass.) |
container_volume | 24 |
creator | Dawson, Emma M. Dunne, Karl A. Richardson, Emily J. Praszkier, Judyta Alfawaz, Dana Woelfel, Simon De Paoli, Amanda Chaudhry, Hassan Henderson, Ian R. Ferrero, Richard L. Rossiter, Amanda E. |
description | Background
Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive restriction‐modification systems, the fact that only some H pylori strains are naturally transformable, the inability of common plasmid and transposon vectors to replicate in this bacterium, as well as the limited number of antibiotic cassettes that are functional in H pylori, there are relatively few genetic tools for the mutagenesis of this bacterium.
Materials and Methods
Here, we use PacBio and Illumina sequencing to reveal the complete genome sequence of H pylori B128 7.13. Furthermore, we describe a system to generate markerless and scarless mutations on the H pylori chromosome using the counter‐selection marker, galactokinase from Escherichia coli.
Results
We show that this mutagenesis strategy can be used to generate in‐frame insertions, gene deletions, and multiple independent mutations in B128 7.13. Using the closed genome as a reference, we also report the absence of second site chromosomal mutations and/or rearrangements in our mutagenized strains. We compare the genome sequence of H pylori B128 7.13 with a closely related strain, H pylori B8, and reveal one notable region of difference, which is a 1430 bp insertion encoding a H pylori‐specific DUF874 family protein of unknown function.
Conclusions
This article reports the closed genome of the important H pylori B128 7.13 strain and a mutagenesis method that can be adopted by researchers as an alternative strategy to generate isogenic mutants of H pylori in order to further our understanding of this bacterium. |
doi_str_mv | 10.1111/hel.12587 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251540944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4037-e5ffba63ba1acaa9b53b53aa3f58fde283e1b107952d7b8dea30584053f5ea4a3</originalsourceid><addsrcrecordid>eNp1kd-K1DAUh4O4uOvqhS8gAW_0orP507TpjbAO687CgDd6HU7b05muaVKTVpkLwUfwGX0SMzO7iwqGQA7Jx8c5-RHygrMFT-tii3bBhdLlI3LGlZCZkqV-nGqmZZZLXZ2SpzHeMsaUzKsn5FRyVoi8KM7I96UfRosT0g06PyCN-GVG1yD1HV2h7RtfQzNhoOPO-tDTd1xoWi64pOBaCjT2bmPx14-fccKRDjhtfUs7H-i0PTgxwNR7t9fNboDwGVs6zNPhMj4jJx3YiM_vznPy6f3Vx-UqW3-4vllerrMmZ7LMUHVdDYWsgUMDUNVKpg0gO6W7FoWWyGvOykqJtqx1iyCZ0nmatlMIOchz8vboHed6wLZBNwWwZgx96mhnPPTm7xfXb83GfzVFwTUXIgle3wmCT_8TJzP0sUFrwaGfo0mI4KJkLE_oq3_QWz8Hl8ZLlOIqZ1W-p94cqSb4GAN2D81wZvahmhSqOYSa2Jd_dv9A3qeYgIsj8K23uPu_yayu1kflbyBorgU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251540944</pqid></control><display><type>article</type><title>Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Dawson, Emma M. ; Dunne, Karl A. ; Richardson, Emily J. ; Praszkier, Judyta ; Alfawaz, Dana ; Woelfel, Simon ; De Paoli, Amanda ; Chaudhry, Hassan ; Henderson, Ian R. ; Ferrero, Richard L. ; Rossiter, Amanda E.</creator><creatorcontrib>Dawson, Emma M. ; Dunne, Karl A. ; Richardson, Emily J. ; Praszkier, Judyta ; Alfawaz, Dana ; Woelfel, Simon ; De Paoli, Amanda ; Chaudhry, Hassan ; Henderson, Ian R. ; Ferrero, Richard L. ; Rossiter, Amanda E.</creatorcontrib><description>Background
Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive restriction‐modification systems, the fact that only some H pylori strains are naturally transformable, the inability of common plasmid and transposon vectors to replicate in this bacterium, as well as the limited number of antibiotic cassettes that are functional in H pylori, there are relatively few genetic tools for the mutagenesis of this bacterium.
Materials and Methods
Here, we use PacBio and Illumina sequencing to reveal the complete genome sequence of H pylori B128 7.13. Furthermore, we describe a system to generate markerless and scarless mutations on the H pylori chromosome using the counter‐selection marker, galactokinase from Escherichia coli.
Results
We show that this mutagenesis strategy can be used to generate in‐frame insertions, gene deletions, and multiple independent mutations in B128 7.13. Using the closed genome as a reference, we also report the absence of second site chromosomal mutations and/or rearrangements in our mutagenized strains. We compare the genome sequence of H pylori B128 7.13 with a closely related strain, H pylori B8, and reveal one notable region of difference, which is a 1430 bp insertion encoding a H pylori‐specific DUF874 family protein of unknown function.
Conclusions
This article reports the closed genome of the important H pylori B128 7.13 strain and a mutagenesis method that can be adopted by researchers as an alternative strategy to generate isogenic mutants of H pylori in order to further our understanding of this bacterium.</description><identifier>ISSN: 1083-4389</identifier><identifier>ISSN: 1523-5378</identifier><identifier>EISSN: 1523-5378</identifier><identifier>DOI: 10.1111/hel.12587</identifier><identifier>PMID: 31062466</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Antibiotics ; Bacteria ; Base Sequence ; Cassettes ; Chromosomes ; E coli ; Galactokinase ; gene mutation ; Gene sequencing ; genetic ; Genetic Techniques ; Genome, Bacterial ; Genomes ; Helicobacter Infections - microbiology ; Helicobacter pylori ; Helicobacter pylori - classification ; Helicobacter pylori - genetics ; Helicobacter pylori - isolation & purification ; Humans ; Infections ; Insertion ; Mutagenesis ; Mutants ; Mutation ; Nucleotide sequence ; Original ; Pathogenesis ; Strains (organisms) ; Whole Genome Sequencing</subject><ispartof>Helicobacter (Cambridge, Mass.), 2019-08, Vol.24 (4), p.e12587-n/a</ispartof><rights>2019. The Authors. Published by John Wiley & Sons Ltd.</rights><rights>2019. The Authors. Helicobacter Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2019 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4037-e5ffba63ba1acaa9b53b53aa3f58fde283e1b107952d7b8dea30584053f5ea4a3</cites><orcidid>0000-0002-8567-7998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fhel.12587$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fhel.12587$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31062466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dawson, Emma M.</creatorcontrib><creatorcontrib>Dunne, Karl A.</creatorcontrib><creatorcontrib>Richardson, Emily J.</creatorcontrib><creatorcontrib>Praszkier, Judyta</creatorcontrib><creatorcontrib>Alfawaz, Dana</creatorcontrib><creatorcontrib>Woelfel, Simon</creatorcontrib><creatorcontrib>De Paoli, Amanda</creatorcontrib><creatorcontrib>Chaudhry, Hassan</creatorcontrib><creatorcontrib>Henderson, Ian R.</creatorcontrib><creatorcontrib>Ferrero, Richard L.</creatorcontrib><creatorcontrib>Rossiter, Amanda E.</creatorcontrib><title>Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations</title><title>Helicobacter (Cambridge, Mass.)</title><addtitle>Helicobacter</addtitle><description>Background
Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive restriction‐modification systems, the fact that only some H pylori strains are naturally transformable, the inability of common plasmid and transposon vectors to replicate in this bacterium, as well as the limited number of antibiotic cassettes that are functional in H pylori, there are relatively few genetic tools for the mutagenesis of this bacterium.
Materials and Methods
Here, we use PacBio and Illumina sequencing to reveal the complete genome sequence of H pylori B128 7.13. Furthermore, we describe a system to generate markerless and scarless mutations on the H pylori chromosome using the counter‐selection marker, galactokinase from Escherichia coli.
Results
We show that this mutagenesis strategy can be used to generate in‐frame insertions, gene deletions, and multiple independent mutations in B128 7.13. Using the closed genome as a reference, we also report the absence of second site chromosomal mutations and/or rearrangements in our mutagenized strains. We compare the genome sequence of H pylori B128 7.13 with a closely related strain, H pylori B8, and reveal one notable region of difference, which is a 1430 bp insertion encoding a H pylori‐specific DUF874 family protein of unknown function.
Conclusions
This article reports the closed genome of the important H pylori B128 7.13 strain and a mutagenesis method that can be adopted by researchers as an alternative strategy to generate isogenic mutants of H pylori in order to further our understanding of this bacterium.</description><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Base Sequence</subject><subject>Cassettes</subject><subject>Chromosomes</subject><subject>E coli</subject><subject>Galactokinase</subject><subject>gene mutation</subject><subject>Gene sequencing</subject><subject>genetic</subject><subject>Genetic Techniques</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Helicobacter Infections - microbiology</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - classification</subject><subject>Helicobacter pylori - genetics</subject><subject>Helicobacter pylori - isolation & purification</subject><subject>Humans</subject><subject>Infections</subject><subject>Insertion</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nucleotide sequence</subject><subject>Original</subject><subject>Pathogenesis</subject><subject>Strains (organisms)</subject><subject>Whole Genome Sequencing</subject><issn>1083-4389</issn><issn>1523-5378</issn><issn>1523-5378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kd-K1DAUh4O4uOvqhS8gAW_0orP507TpjbAO687CgDd6HU7b05muaVKTVpkLwUfwGX0SMzO7iwqGQA7Jx8c5-RHygrMFT-tii3bBhdLlI3LGlZCZkqV-nGqmZZZLXZ2SpzHeMsaUzKsn5FRyVoi8KM7I96UfRosT0g06PyCN-GVG1yD1HV2h7RtfQzNhoOPO-tDTd1xoWi64pOBaCjT2bmPx14-fccKRDjhtfUs7H-i0PTgxwNR7t9fNboDwGVs6zNPhMj4jJx3YiM_vznPy6f3Vx-UqW3-4vllerrMmZ7LMUHVdDYWsgUMDUNVKpg0gO6W7FoWWyGvOykqJtqx1iyCZ0nmatlMIOchz8vboHed6wLZBNwWwZgx96mhnPPTm7xfXb83GfzVFwTUXIgle3wmCT_8TJzP0sUFrwaGfo0mI4KJkLE_oq3_QWz8Hl8ZLlOIqZ1W-p94cqSb4GAN2D81wZvahmhSqOYSa2Jd_dv9A3qeYgIsj8K23uPu_yayu1kflbyBorgU</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Dawson, Emma M.</creator><creator>Dunne, Karl A.</creator><creator>Richardson, Emily J.</creator><creator>Praszkier, Judyta</creator><creator>Alfawaz, Dana</creator><creator>Woelfel, Simon</creator><creator>De Paoli, Amanda</creator><creator>Chaudhry, Hassan</creator><creator>Henderson, Ian R.</creator><creator>Ferrero, Richard L.</creator><creator>Rossiter, Amanda E.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8567-7998</orcidid></search><sort><creationdate>201908</creationdate><title>Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations</title><author>Dawson, Emma M. ; Dunne, Karl A. ; Richardson, Emily J. ; Praszkier, Judyta ; Alfawaz, Dana ; Woelfel, Simon ; De Paoli, Amanda ; Chaudhry, Hassan ; Henderson, Ian R. ; Ferrero, Richard L. ; Rossiter, Amanda E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4037-e5ffba63ba1acaa9b53b53aa3f58fde283e1b107952d7b8dea30584053f5ea4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Base Sequence</topic><topic>Cassettes</topic><topic>Chromosomes</topic><topic>E coli</topic><topic>Galactokinase</topic><topic>gene mutation</topic><topic>Gene sequencing</topic><topic>genetic</topic><topic>Genetic Techniques</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Helicobacter Infections - microbiology</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - classification</topic><topic>Helicobacter pylori - genetics</topic><topic>Helicobacter pylori - isolation & purification</topic><topic>Humans</topic><topic>Infections</topic><topic>Insertion</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nucleotide sequence</topic><topic>Original</topic><topic>Pathogenesis</topic><topic>Strains (organisms)</topic><topic>Whole Genome Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, Emma M.</creatorcontrib><creatorcontrib>Dunne, Karl A.</creatorcontrib><creatorcontrib>Richardson, Emily J.</creatorcontrib><creatorcontrib>Praszkier, Judyta</creatorcontrib><creatorcontrib>Alfawaz, Dana</creatorcontrib><creatorcontrib>Woelfel, Simon</creatorcontrib><creatorcontrib>De Paoli, Amanda</creatorcontrib><creatorcontrib>Chaudhry, Hassan</creatorcontrib><creatorcontrib>Henderson, Ian R.</creatorcontrib><creatorcontrib>Ferrero, Richard L.</creatorcontrib><creatorcontrib>Rossiter, Amanda E.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Helicobacter (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, Emma M.</au><au>Dunne, Karl A.</au><au>Richardson, Emily J.</au><au>Praszkier, Judyta</au><au>Alfawaz, Dana</au><au>Woelfel, Simon</au><au>De Paoli, Amanda</au><au>Chaudhry, Hassan</au><au>Henderson, Ian R.</au><au>Ferrero, Richard L.</au><au>Rossiter, Amanda E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations</atitle><jtitle>Helicobacter (Cambridge, Mass.)</jtitle><addtitle>Helicobacter</addtitle><date>2019-08</date><risdate>2019</risdate><volume>24</volume><issue>4</issue><spage>e12587</spage><epage>n/a</epage><pages>e12587-n/a</pages><issn>1083-4389</issn><issn>1523-5378</issn><eissn>1523-5378</eissn><abstract>Background
Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive restriction‐modification systems, the fact that only some H pylori strains are naturally transformable, the inability of common plasmid and transposon vectors to replicate in this bacterium, as well as the limited number of antibiotic cassettes that are functional in H pylori, there are relatively few genetic tools for the mutagenesis of this bacterium.
Materials and Methods
Here, we use PacBio and Illumina sequencing to reveal the complete genome sequence of H pylori B128 7.13. Furthermore, we describe a system to generate markerless and scarless mutations on the H pylori chromosome using the counter‐selection marker, galactokinase from Escherichia coli.
Results
We show that this mutagenesis strategy can be used to generate in‐frame insertions, gene deletions, and multiple independent mutations in B128 7.13. Using the closed genome as a reference, we also report the absence of second site chromosomal mutations and/or rearrangements in our mutagenized strains. We compare the genome sequence of H pylori B128 7.13 with a closely related strain, H pylori B8, and reveal one notable region of difference, which is a 1430 bp insertion encoding a H pylori‐specific DUF874 family protein of unknown function.
Conclusions
This article reports the closed genome of the important H pylori B128 7.13 strain and a mutagenesis method that can be adopted by researchers as an alternative strategy to generate isogenic mutants of H pylori in order to further our understanding of this bacterium.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31062466</pmid><doi>10.1111/hel.12587</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8567-7998</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4389 |
ispartof | Helicobacter (Cambridge, Mass.), 2019-08, Vol.24 (4), p.e12587-n/a |
issn | 1083-4389 1523-5378 1523-5378 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618122 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Antibiotics Bacteria Base Sequence Cassettes Chromosomes E coli Galactokinase gene mutation Gene sequencing genetic Genetic Techniques Genome, Bacterial Genomes Helicobacter Infections - microbiology Helicobacter pylori Helicobacter pylori - classification Helicobacter pylori - genetics Helicobacter pylori - isolation & purification Humans Infections Insertion Mutagenesis Mutants Mutation Nucleotide sequence Original Pathogenesis Strains (organisms) Whole Genome Sequencing |
title | Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20genome%20sequence%20of%20Helicobacter%20pylori%20B128%207.13%20and%20a%20single%E2%80%90step%20method%20for%20the%20generation%20of%20unmarked%20mutations&rft.jtitle=Helicobacter%20(Cambridge,%20Mass.)&rft.au=Dawson,%20Emma%20M.&rft.date=2019-08&rft.volume=24&rft.issue=4&rft.spage=e12587&rft.epage=n/a&rft.pages=e12587-n/a&rft.issn=1083-4389&rft.eissn=1523-5378&rft_id=info:doi/10.1111/hel.12587&rft_dat=%3Cproquest_pubme%3E2251540944%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251540944&rft_id=info:pmid/31062466&rfr_iscdi=true |