Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations

Background Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Helicobacter (Cambridge, Mass.) Mass.), 2019-08, Vol.24 (4), p.e12587-n/a
Hauptverfasser: Dawson, Emma M., Dunne, Karl A., Richardson, Emily J., Praszkier, Judyta, Alfawaz, Dana, Woelfel, Simon, De Paoli, Amanda, Chaudhry, Hassan, Henderson, Ian R., Ferrero, Richard L., Rossiter, Amanda E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e12587
container_title Helicobacter (Cambridge, Mass.)
container_volume 24
creator Dawson, Emma M.
Dunne, Karl A.
Richardson, Emily J.
Praszkier, Judyta
Alfawaz, Dana
Woelfel, Simon
De Paoli, Amanda
Chaudhry, Hassan
Henderson, Ian R.
Ferrero, Richard L.
Rossiter, Amanda E.
description Background Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive restriction‐modification systems, the fact that only some H pylori strains are naturally transformable, the inability of common plasmid and transposon vectors to replicate in this bacterium, as well as the limited number of antibiotic cassettes that are functional in H pylori, there are relatively few genetic tools for the mutagenesis of this bacterium. Materials and Methods Here, we use PacBio and Illumina sequencing to reveal the complete genome sequence of H pylori B128 7.13. Furthermore, we describe a system to generate markerless and scarless mutations on the H pylori chromosome using the counter‐selection marker, galactokinase from Escherichia coli. Results We show that this mutagenesis strategy can be used to generate in‐frame insertions, gene deletions, and multiple independent mutations in B128 7.13. Using the closed genome as a reference, we also report the absence of second site chromosomal mutations and/or rearrangements in our mutagenized strains. We compare the genome sequence of H pylori B128 7.13 with a closely related strain, H pylori B8, and reveal one notable region of difference, which is a 1430 bp insertion encoding a H pylori‐specific DUF874 family protein of unknown function. Conclusions This article reports the closed genome of the important H pylori B128 7.13 strain and a mutagenesis method that can be adopted by researchers as an alternative strategy to generate isogenic mutants of H pylori in order to further our understanding of this bacterium.
doi_str_mv 10.1111/hel.12587
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251540944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4037-e5ffba63ba1acaa9b53b53aa3f58fde283e1b107952d7b8dea30584053f5ea4a3</originalsourceid><addsrcrecordid>eNp1kd-K1DAUh4O4uOvqhS8gAW_0orP507TpjbAO687CgDd6HU7b05muaVKTVpkLwUfwGX0SMzO7iwqGQA7Jx8c5-RHygrMFT-tii3bBhdLlI3LGlZCZkqV-nGqmZZZLXZ2SpzHeMsaUzKsn5FRyVoi8KM7I96UfRosT0g06PyCN-GVG1yD1HV2h7RtfQzNhoOPO-tDTd1xoWi64pOBaCjT2bmPx14-fccKRDjhtfUs7H-i0PTgxwNR7t9fNboDwGVs6zNPhMj4jJx3YiM_vznPy6f3Vx-UqW3-4vllerrMmZ7LMUHVdDYWsgUMDUNVKpg0gO6W7FoWWyGvOykqJtqx1iyCZ0nmatlMIOchz8vboHed6wLZBNwWwZgx96mhnPPTm7xfXb83GfzVFwTUXIgle3wmCT_8TJzP0sUFrwaGfo0mI4KJkLE_oq3_QWz8Hl8ZLlOIqZ1W-p94cqSb4GAN2D81wZvahmhSqOYSa2Jd_dv9A3qeYgIsj8K23uPu_yayu1kflbyBorgU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251540944</pqid></control><display><type>article</type><title>Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Dawson, Emma M. ; Dunne, Karl A. ; Richardson, Emily J. ; Praszkier, Judyta ; Alfawaz, Dana ; Woelfel, Simon ; De Paoli, Amanda ; Chaudhry, Hassan ; Henderson, Ian R. ; Ferrero, Richard L. ; Rossiter, Amanda E.</creator><creatorcontrib>Dawson, Emma M. ; Dunne, Karl A. ; Richardson, Emily J. ; Praszkier, Judyta ; Alfawaz, Dana ; Woelfel, Simon ; De Paoli, Amanda ; Chaudhry, Hassan ; Henderson, Ian R. ; Ferrero, Richard L. ; Rossiter, Amanda E.</creatorcontrib><description>Background Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive restriction‐modification systems, the fact that only some H pylori strains are naturally transformable, the inability of common plasmid and transposon vectors to replicate in this bacterium, as well as the limited number of antibiotic cassettes that are functional in H pylori, there are relatively few genetic tools for the mutagenesis of this bacterium. Materials and Methods Here, we use PacBio and Illumina sequencing to reveal the complete genome sequence of H pylori B128 7.13. Furthermore, we describe a system to generate markerless and scarless mutations on the H pylori chromosome using the counter‐selection marker, galactokinase from Escherichia coli. Results We show that this mutagenesis strategy can be used to generate in‐frame insertions, gene deletions, and multiple independent mutations in B128 7.13. Using the closed genome as a reference, we also report the absence of second site chromosomal mutations and/or rearrangements in our mutagenized strains. We compare the genome sequence of H pylori B128 7.13 with a closely related strain, H pylori B8, and reveal one notable region of difference, which is a 1430 bp insertion encoding a H pylori‐specific DUF874 family protein of unknown function. Conclusions This article reports the closed genome of the important H pylori B128 7.13 strain and a mutagenesis method that can be adopted by researchers as an alternative strategy to generate isogenic mutants of H pylori in order to further our understanding of this bacterium.</description><identifier>ISSN: 1083-4389</identifier><identifier>ISSN: 1523-5378</identifier><identifier>EISSN: 1523-5378</identifier><identifier>DOI: 10.1111/hel.12587</identifier><identifier>PMID: 31062466</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Antibiotics ; Bacteria ; Base Sequence ; Cassettes ; Chromosomes ; E coli ; Galactokinase ; gene mutation ; Gene sequencing ; genetic ; Genetic Techniques ; Genome, Bacterial ; Genomes ; Helicobacter Infections - microbiology ; Helicobacter pylori ; Helicobacter pylori - classification ; Helicobacter pylori - genetics ; Helicobacter pylori - isolation &amp; purification ; Humans ; Infections ; Insertion ; Mutagenesis ; Mutants ; Mutation ; Nucleotide sequence ; Original ; Pathogenesis ; Strains (organisms) ; Whole Genome Sequencing</subject><ispartof>Helicobacter (Cambridge, Mass.), 2019-08, Vol.24 (4), p.e12587-n/a</ispartof><rights>2019. The Authors. Published by John Wiley &amp; Sons Ltd.</rights><rights>2019. The Authors. Helicobacter Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2019 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4037-e5ffba63ba1acaa9b53b53aa3f58fde283e1b107952d7b8dea30584053f5ea4a3</cites><orcidid>0000-0002-8567-7998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fhel.12587$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fhel.12587$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31062466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dawson, Emma M.</creatorcontrib><creatorcontrib>Dunne, Karl A.</creatorcontrib><creatorcontrib>Richardson, Emily J.</creatorcontrib><creatorcontrib>Praszkier, Judyta</creatorcontrib><creatorcontrib>Alfawaz, Dana</creatorcontrib><creatorcontrib>Woelfel, Simon</creatorcontrib><creatorcontrib>De Paoli, Amanda</creatorcontrib><creatorcontrib>Chaudhry, Hassan</creatorcontrib><creatorcontrib>Henderson, Ian R.</creatorcontrib><creatorcontrib>Ferrero, Richard L.</creatorcontrib><creatorcontrib>Rossiter, Amanda E.</creatorcontrib><title>Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations</title><title>Helicobacter (Cambridge, Mass.)</title><addtitle>Helicobacter</addtitle><description>Background Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive restriction‐modification systems, the fact that only some H pylori strains are naturally transformable, the inability of common plasmid and transposon vectors to replicate in this bacterium, as well as the limited number of antibiotic cassettes that are functional in H pylori, there are relatively few genetic tools for the mutagenesis of this bacterium. Materials and Methods Here, we use PacBio and Illumina sequencing to reveal the complete genome sequence of H pylori B128 7.13. Furthermore, we describe a system to generate markerless and scarless mutations on the H pylori chromosome using the counter‐selection marker, galactokinase from Escherichia coli. Results We show that this mutagenesis strategy can be used to generate in‐frame insertions, gene deletions, and multiple independent mutations in B128 7.13. Using the closed genome as a reference, we also report the absence of second site chromosomal mutations and/or rearrangements in our mutagenized strains. We compare the genome sequence of H pylori B128 7.13 with a closely related strain, H pylori B8, and reveal one notable region of difference, which is a 1430 bp insertion encoding a H pylori‐specific DUF874 family protein of unknown function. Conclusions This article reports the closed genome of the important H pylori B128 7.13 strain and a mutagenesis method that can be adopted by researchers as an alternative strategy to generate isogenic mutants of H pylori in order to further our understanding of this bacterium.</description><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Base Sequence</subject><subject>Cassettes</subject><subject>Chromosomes</subject><subject>E coli</subject><subject>Galactokinase</subject><subject>gene mutation</subject><subject>Gene sequencing</subject><subject>genetic</subject><subject>Genetic Techniques</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Helicobacter Infections - microbiology</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - classification</subject><subject>Helicobacter pylori - genetics</subject><subject>Helicobacter pylori - isolation &amp; purification</subject><subject>Humans</subject><subject>Infections</subject><subject>Insertion</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nucleotide sequence</subject><subject>Original</subject><subject>Pathogenesis</subject><subject>Strains (organisms)</subject><subject>Whole Genome Sequencing</subject><issn>1083-4389</issn><issn>1523-5378</issn><issn>1523-5378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kd-K1DAUh4O4uOvqhS8gAW_0orP507TpjbAO687CgDd6HU7b05muaVKTVpkLwUfwGX0SMzO7iwqGQA7Jx8c5-RHygrMFT-tii3bBhdLlI3LGlZCZkqV-nGqmZZZLXZ2SpzHeMsaUzKsn5FRyVoi8KM7I96UfRosT0g06PyCN-GVG1yD1HV2h7RtfQzNhoOPO-tDTd1xoWi64pOBaCjT2bmPx14-fccKRDjhtfUs7H-i0PTgxwNR7t9fNboDwGVs6zNPhMj4jJx3YiM_vznPy6f3Vx-UqW3-4vllerrMmZ7LMUHVdDYWsgUMDUNVKpg0gO6W7FoWWyGvOykqJtqx1iyCZ0nmatlMIOchz8vboHed6wLZBNwWwZgx96mhnPPTm7xfXb83GfzVFwTUXIgle3wmCT_8TJzP0sUFrwaGfo0mI4KJkLE_oq3_QWz8Hl8ZLlOIqZ1W-p94cqSb4GAN2D81wZvahmhSqOYSa2Jd_dv9A3qeYgIsj8K23uPu_yayu1kflbyBorgU</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Dawson, Emma M.</creator><creator>Dunne, Karl A.</creator><creator>Richardson, Emily J.</creator><creator>Praszkier, Judyta</creator><creator>Alfawaz, Dana</creator><creator>Woelfel, Simon</creator><creator>De Paoli, Amanda</creator><creator>Chaudhry, Hassan</creator><creator>Henderson, Ian R.</creator><creator>Ferrero, Richard L.</creator><creator>Rossiter, Amanda E.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8567-7998</orcidid></search><sort><creationdate>201908</creationdate><title>Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations</title><author>Dawson, Emma M. ; Dunne, Karl A. ; Richardson, Emily J. ; Praszkier, Judyta ; Alfawaz, Dana ; Woelfel, Simon ; De Paoli, Amanda ; Chaudhry, Hassan ; Henderson, Ian R. ; Ferrero, Richard L. ; Rossiter, Amanda E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4037-e5ffba63ba1acaa9b53b53aa3f58fde283e1b107952d7b8dea30584053f5ea4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Base Sequence</topic><topic>Cassettes</topic><topic>Chromosomes</topic><topic>E coli</topic><topic>Galactokinase</topic><topic>gene mutation</topic><topic>Gene sequencing</topic><topic>genetic</topic><topic>Genetic Techniques</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Helicobacter Infections - microbiology</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - classification</topic><topic>Helicobacter pylori - genetics</topic><topic>Helicobacter pylori - isolation &amp; purification</topic><topic>Humans</topic><topic>Infections</topic><topic>Insertion</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nucleotide sequence</topic><topic>Original</topic><topic>Pathogenesis</topic><topic>Strains (organisms)</topic><topic>Whole Genome Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, Emma M.</creatorcontrib><creatorcontrib>Dunne, Karl A.</creatorcontrib><creatorcontrib>Richardson, Emily J.</creatorcontrib><creatorcontrib>Praszkier, Judyta</creatorcontrib><creatorcontrib>Alfawaz, Dana</creatorcontrib><creatorcontrib>Woelfel, Simon</creatorcontrib><creatorcontrib>De Paoli, Amanda</creatorcontrib><creatorcontrib>Chaudhry, Hassan</creatorcontrib><creatorcontrib>Henderson, Ian R.</creatorcontrib><creatorcontrib>Ferrero, Richard L.</creatorcontrib><creatorcontrib>Rossiter, Amanda E.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Helicobacter (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, Emma M.</au><au>Dunne, Karl A.</au><au>Richardson, Emily J.</au><au>Praszkier, Judyta</au><au>Alfawaz, Dana</au><au>Woelfel, Simon</au><au>De Paoli, Amanda</au><au>Chaudhry, Hassan</au><au>Henderson, Ian R.</au><au>Ferrero, Richard L.</au><au>Rossiter, Amanda E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations</atitle><jtitle>Helicobacter (Cambridge, Mass.)</jtitle><addtitle>Helicobacter</addtitle><date>2019-08</date><risdate>2019</risdate><volume>24</volume><issue>4</issue><spage>e12587</spage><epage>n/a</epage><pages>e12587-n/a</pages><issn>1083-4389</issn><issn>1523-5378</issn><eissn>1523-5378</eissn><abstract>Background Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive restriction‐modification systems, the fact that only some H pylori strains are naturally transformable, the inability of common plasmid and transposon vectors to replicate in this bacterium, as well as the limited number of antibiotic cassettes that are functional in H pylori, there are relatively few genetic tools for the mutagenesis of this bacterium. Materials and Methods Here, we use PacBio and Illumina sequencing to reveal the complete genome sequence of H pylori B128 7.13. Furthermore, we describe a system to generate markerless and scarless mutations on the H pylori chromosome using the counter‐selection marker, galactokinase from Escherichia coli. Results We show that this mutagenesis strategy can be used to generate in‐frame insertions, gene deletions, and multiple independent mutations in B128 7.13. Using the closed genome as a reference, we also report the absence of second site chromosomal mutations and/or rearrangements in our mutagenized strains. We compare the genome sequence of H pylori B128 7.13 with a closely related strain, H pylori B8, and reveal one notable region of difference, which is a 1430 bp insertion encoding a H pylori‐specific DUF874 family protein of unknown function. Conclusions This article reports the closed genome of the important H pylori B128 7.13 strain and a mutagenesis method that can be adopted by researchers as an alternative strategy to generate isogenic mutants of H pylori in order to further our understanding of this bacterium.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31062466</pmid><doi>10.1111/hel.12587</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8567-7998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-4389
ispartof Helicobacter (Cambridge, Mass.), 2019-08, Vol.24 (4), p.e12587-n/a
issn 1083-4389
1523-5378
1523-5378
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618122
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Antibiotics
Bacteria
Base Sequence
Cassettes
Chromosomes
E coli
Galactokinase
gene mutation
Gene sequencing
genetic
Genetic Techniques
Genome, Bacterial
Genomes
Helicobacter Infections - microbiology
Helicobacter pylori
Helicobacter pylori - classification
Helicobacter pylori - genetics
Helicobacter pylori - isolation & purification
Humans
Infections
Insertion
Mutagenesis
Mutants
Mutation
Nucleotide sequence
Original
Pathogenesis
Strains (organisms)
Whole Genome Sequencing
title Complete genome sequence of Helicobacter pylori B128 7.13 and a single‐step method for the generation of unmarked mutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20genome%20sequence%20of%20Helicobacter%20pylori%20B128%207.13%20and%20a%20single%E2%80%90step%20method%20for%20the%20generation%20of%20unmarked%20mutations&rft.jtitle=Helicobacter%20(Cambridge,%20Mass.)&rft.au=Dawson,%20Emma%20M.&rft.date=2019-08&rft.volume=24&rft.issue=4&rft.spage=e12587&rft.epage=n/a&rft.pages=e12587-n/a&rft.issn=1083-4389&rft.eissn=1523-5378&rft_id=info:doi/10.1111/hel.12587&rft_dat=%3Cproquest_pubme%3E2251540944%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251540944&rft_id=info:pmid/31062466&rfr_iscdi=true