The Transcriptomic Toolbox: Resources for Interpreting Large Gene Expression Data within a Precision Medicine Context for Metabolic Disease Atherosclerosis

As one of the most widespread metabolic diseases, atherosclerosis affects nearly everyone as they age; arteries gradually narrow from plaque accumulation over time reducing oxygenated blood flow to central and periphery causing heart disease, stroke, kidney problems, and even pulmonary disease. Pers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of personalized medicine 2019-04, Vol.9 (2), p.21
Hauptverfasser: Marín de Evsikova, Caralina, Raplee, Isaac D, Lockhart, John, Jaimes, Gilberto, Evsikov, Alexei V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 21
container_title Journal of personalized medicine
container_volume 9
creator Marín de Evsikova, Caralina
Raplee, Isaac D
Lockhart, John
Jaimes, Gilberto
Evsikov, Alexei V
description As one of the most widespread metabolic diseases, atherosclerosis affects nearly everyone as they age; arteries gradually narrow from plaque accumulation over time reducing oxygenated blood flow to central and periphery causing heart disease, stroke, kidney problems, and even pulmonary disease. Personalized medicine promises to bring treatments based on individual genome sequencing that precisely target the molecular pathways underlying atherosclerosis and its symptoms, but to date only a few genotypes have been identified. A promising alternative to this genetic approach is the identification of pathways altered in atherosclerosis by transcriptome analysis of atherosclerotic tissues to target specific aspects of disease. Transcriptomics is a potentially useful tool for both diagnostics and discovery science, exposing novel cellular and molecular mechanisms in clinical and translational models, and depending on experimental design to identify and test novel therapeutics. The cost and time required for transcriptome analysis has been greatly reduced by the development of next generation sequencing. The goal of this resource article is to provide background and a guide to appropriate technologies and downstream analyses in transcriptomics experiments generating ever-increasing amounts of gene expression data.
doi_str_mv 10.3390/jpm9020021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6617151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216770132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-e63ccf173861a5fa8822dacf25e3b8b093df7d52baa088f9c202849c829160553</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoNYbKm98QdIwBsRVvMxk0m8EMq2toUtiqzXIZM5s5tlJhmTrK6_pX-26Xc1FyfhnIf3nJwXoTeUfORckU-baVSEEcLoC3TASFPPqoqJl8_e--gopQ0pR9aMCfIK7XNKOJNUHqCr5RrwMhqfbHRTDqOzeBnC0IbdZ_wDUthGCwn3IeILnyFOEbLzK7wwcQX4DDzg011JpuSCxycmG_zH5bXz2ODvEay7zV9C56wr7DwUkV2-1buEbNowlIYnLoFJgI_zGmJIdriJLr1Ge70ZEhzd34fo59fT5fx8tvh2djE_XsxsRUSegeDW9rThUlBT90ZKxjpje1YDb2VLFO_6pqtZawyRsleWESYrZSVTVJC65ofoy53utG1H6Cz4HM2gp-hGE__qYJz-t-LdWq_Cby0EbWhNi8D7e4EYfm0hZT26ZGEYjIewTZoxKpqGUM4K-u4_dFNW7Mv3ClUpVTGqVKE-3FG2LCJF6B-HoUTf2K6fbC_w2-fjP6IPJvNrHMqrNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249942199</pqid></control><display><type>article</type><title>The Transcriptomic Toolbox: Resources for Interpreting Large Gene Expression Data within a Precision Medicine Context for Metabolic Disease Atherosclerosis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Marín de Evsikova, Caralina ; Raplee, Isaac D ; Lockhart, John ; Jaimes, Gilberto ; Evsikov, Alexei V</creator><creatorcontrib>Marín de Evsikova, Caralina ; Raplee, Isaac D ; Lockhart, John ; Jaimes, Gilberto ; Evsikov, Alexei V</creatorcontrib><description>As one of the most widespread metabolic diseases, atherosclerosis affects nearly everyone as they age; arteries gradually narrow from plaque accumulation over time reducing oxygenated blood flow to central and periphery causing heart disease, stroke, kidney problems, and even pulmonary disease. Personalized medicine promises to bring treatments based on individual genome sequencing that precisely target the molecular pathways underlying atherosclerosis and its symptoms, but to date only a few genotypes have been identified. A promising alternative to this genetic approach is the identification of pathways altered in atherosclerosis by transcriptome analysis of atherosclerotic tissues to target specific aspects of disease. Transcriptomics is a potentially useful tool for both diagnostics and discovery science, exposing novel cellular and molecular mechanisms in clinical and translational models, and depending on experimental design to identify and test novel therapeutics. The cost and time required for transcriptome analysis has been greatly reduced by the development of next generation sequencing. The goal of this resource article is to provide background and a guide to appropriate technologies and downstream analyses in transcriptomics experiments generating ever-increasing amounts of gene expression data.</description><identifier>ISSN: 2075-4426</identifier><identifier>EISSN: 2075-4426</identifier><identifier>DOI: 10.3390/jpm9020021</identifier><identifier>PMID: 31032818</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Arteries ; Arteriosclerosis ; Atherosclerosis ; Bioinformatics ; Blood flow ; Blood pressure ; Cardiovascular disease ; Cloning ; Coronary artery disease ; Coronary vessels ; Discovery tools ; Gene expression ; Genomes ; Genomics ; Genotypes ; Heart diseases ; Hospital costs ; Hybridization ; Laboratories ; Lung diseases ; Medical research ; Metabolic disorders ; Metabolism ; Molecular modelling ; Next-generation sequencing ; Precision medicine ; R&amp;D ; Research &amp; development ; Researchers</subject><ispartof>Journal of personalized medicine, 2019-04, Vol.9 (2), p.21</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-e63ccf173861a5fa8822dacf25e3b8b093df7d52baa088f9c202849c829160553</citedby><cites>FETCH-LOGICAL-c406t-e63ccf173861a5fa8822dacf25e3b8b093df7d52baa088f9c202849c829160553</cites><orcidid>0000-0002-2727-6969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617151/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617151/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31032818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marín de Evsikova, Caralina</creatorcontrib><creatorcontrib>Raplee, Isaac D</creatorcontrib><creatorcontrib>Lockhart, John</creatorcontrib><creatorcontrib>Jaimes, Gilberto</creatorcontrib><creatorcontrib>Evsikov, Alexei V</creatorcontrib><title>The Transcriptomic Toolbox: Resources for Interpreting Large Gene Expression Data within a Precision Medicine Context for Metabolic Disease Atherosclerosis</title><title>Journal of personalized medicine</title><addtitle>J Pers Med</addtitle><description>As one of the most widespread metabolic diseases, atherosclerosis affects nearly everyone as they age; arteries gradually narrow from plaque accumulation over time reducing oxygenated blood flow to central and periphery causing heart disease, stroke, kidney problems, and even pulmonary disease. Personalized medicine promises to bring treatments based on individual genome sequencing that precisely target the molecular pathways underlying atherosclerosis and its symptoms, but to date only a few genotypes have been identified. A promising alternative to this genetic approach is the identification of pathways altered in atherosclerosis by transcriptome analysis of atherosclerotic tissues to target specific aspects of disease. Transcriptomics is a potentially useful tool for both diagnostics and discovery science, exposing novel cellular and molecular mechanisms in clinical and translational models, and depending on experimental design to identify and test novel therapeutics. The cost and time required for transcriptome analysis has been greatly reduced by the development of next generation sequencing. The goal of this resource article is to provide background and a guide to appropriate technologies and downstream analyses in transcriptomics experiments generating ever-increasing amounts of gene expression data.</description><subject>Arteries</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Bioinformatics</subject><subject>Blood flow</subject><subject>Blood pressure</subject><subject>Cardiovascular disease</subject><subject>Cloning</subject><subject>Coronary artery disease</subject><subject>Coronary vessels</subject><subject>Discovery tools</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Heart diseases</subject><subject>Hospital costs</subject><subject>Hybridization</subject><subject>Laboratories</subject><subject>Lung diseases</subject><subject>Medical research</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Molecular modelling</subject><subject>Next-generation sequencing</subject><subject>Precision medicine</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Researchers</subject><issn>2075-4426</issn><issn>2075-4426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1rFDEUhoNYbKm98QdIwBsRVvMxk0m8EMq2toUtiqzXIZM5s5tlJhmTrK6_pX-26Xc1FyfhnIf3nJwXoTeUfORckU-baVSEEcLoC3TASFPPqoqJl8_e--gopQ0pR9aMCfIK7XNKOJNUHqCr5RrwMhqfbHRTDqOzeBnC0IbdZ_wDUthGCwn3IeILnyFOEbLzK7wwcQX4DDzg011JpuSCxycmG_zH5bXz2ODvEay7zV9C56wr7DwUkV2-1buEbNowlIYnLoFJgI_zGmJIdriJLr1Ge70ZEhzd34fo59fT5fx8tvh2djE_XsxsRUSegeDW9rThUlBT90ZKxjpje1YDb2VLFO_6pqtZawyRsleWESYrZSVTVJC65ofoy53utG1H6Cz4HM2gp-hGE__qYJz-t-LdWq_Cby0EbWhNi8D7e4EYfm0hZT26ZGEYjIewTZoxKpqGUM4K-u4_dFNW7Mv3ClUpVTGqVKE-3FG2LCJF6B-HoUTf2K6fbC_w2-fjP6IPJvNrHMqrNg</recordid><startdate>20190429</startdate><enddate>20190429</enddate><creator>Marín de Evsikova, Caralina</creator><creator>Raplee, Isaac D</creator><creator>Lockhart, John</creator><creator>Jaimes, Gilberto</creator><creator>Evsikov, Alexei V</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2727-6969</orcidid></search><sort><creationdate>20190429</creationdate><title>The Transcriptomic Toolbox: Resources for Interpreting Large Gene Expression Data within a Precision Medicine Context for Metabolic Disease Atherosclerosis</title><author>Marín de Evsikova, Caralina ; Raplee, Isaac D ; Lockhart, John ; Jaimes, Gilberto ; Evsikov, Alexei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-e63ccf173861a5fa8822dacf25e3b8b093df7d52baa088f9c202849c829160553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arteries</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Bioinformatics</topic><topic>Blood flow</topic><topic>Blood pressure</topic><topic>Cardiovascular disease</topic><topic>Cloning</topic><topic>Coronary artery disease</topic><topic>Coronary vessels</topic><topic>Discovery tools</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Heart diseases</topic><topic>Hospital costs</topic><topic>Hybridization</topic><topic>Laboratories</topic><topic>Lung diseases</topic><topic>Medical research</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Molecular modelling</topic><topic>Next-generation sequencing</topic><topic>Precision medicine</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marín de Evsikova, Caralina</creatorcontrib><creatorcontrib>Raplee, Isaac D</creatorcontrib><creatorcontrib>Lockhart, John</creatorcontrib><creatorcontrib>Jaimes, Gilberto</creatorcontrib><creatorcontrib>Evsikov, Alexei V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of personalized medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marín de Evsikova, Caralina</au><au>Raplee, Isaac D</au><au>Lockhart, John</au><au>Jaimes, Gilberto</au><au>Evsikov, Alexei V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Transcriptomic Toolbox: Resources for Interpreting Large Gene Expression Data within a Precision Medicine Context for Metabolic Disease Atherosclerosis</atitle><jtitle>Journal of personalized medicine</jtitle><addtitle>J Pers Med</addtitle><date>2019-04-29</date><risdate>2019</risdate><volume>9</volume><issue>2</issue><spage>21</spage><pages>21-</pages><issn>2075-4426</issn><eissn>2075-4426</eissn><abstract>As one of the most widespread metabolic diseases, atherosclerosis affects nearly everyone as they age; arteries gradually narrow from plaque accumulation over time reducing oxygenated blood flow to central and periphery causing heart disease, stroke, kidney problems, and even pulmonary disease. Personalized medicine promises to bring treatments based on individual genome sequencing that precisely target the molecular pathways underlying atherosclerosis and its symptoms, but to date only a few genotypes have been identified. A promising alternative to this genetic approach is the identification of pathways altered in atherosclerosis by transcriptome analysis of atherosclerotic tissues to target specific aspects of disease. Transcriptomics is a potentially useful tool for both diagnostics and discovery science, exposing novel cellular and molecular mechanisms in clinical and translational models, and depending on experimental design to identify and test novel therapeutics. The cost and time required for transcriptome analysis has been greatly reduced by the development of next generation sequencing. The goal of this resource article is to provide background and a guide to appropriate technologies and downstream analyses in transcriptomics experiments generating ever-increasing amounts of gene expression data.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31032818</pmid><doi>10.3390/jpm9020021</doi><orcidid>https://orcid.org/0000-0002-2727-6969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4426
ispartof Journal of personalized medicine, 2019-04, Vol.9 (2), p.21
issn 2075-4426
2075-4426
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6617151
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Arteries
Arteriosclerosis
Atherosclerosis
Bioinformatics
Blood flow
Blood pressure
Cardiovascular disease
Cloning
Coronary artery disease
Coronary vessels
Discovery tools
Gene expression
Genomes
Genomics
Genotypes
Heart diseases
Hospital costs
Hybridization
Laboratories
Lung diseases
Medical research
Metabolic disorders
Metabolism
Molecular modelling
Next-generation sequencing
Precision medicine
R&D
Research & development
Researchers
title The Transcriptomic Toolbox: Resources for Interpreting Large Gene Expression Data within a Precision Medicine Context for Metabolic Disease Atherosclerosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Transcriptomic%20Toolbox:%20Resources%20for%20Interpreting%20Large%20Gene%20Expression%20Data%20within%20a%20Precision%20Medicine%20Context%20for%20Metabolic%20Disease%20Atherosclerosis&rft.jtitle=Journal%20of%20personalized%20medicine&rft.au=Mar%C3%ADn%20de%20Evsikova,%20Caralina&rft.date=2019-04-29&rft.volume=9&rft.issue=2&rft.spage=21&rft.pages=21-&rft.issn=2075-4426&rft.eissn=2075-4426&rft_id=info:doi/10.3390/jpm9020021&rft_dat=%3Cproquest_pubme%3E2216770132%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249942199&rft_id=info:pmid/31032818&rfr_iscdi=true