Structural Basis of Protein Kinase R Autophosphorylation

The RNA-activated protein kinase, PKR, is a key mediator of the innate immunity response to viral infection. Viral double-stranded RNAs induce PKR dimerization and autophosphorylation. The PKR kinase domain forms a back-to-back dimer. However, intermolecular (trans) autophosphorylation is not feasib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2019-07, Vol.58 (27), p.2967-2977
Hauptverfasser: Mayo, Christopher B, Erlandsen, Heidi, Mouser, David J, Feinstein, Aaron G, Robinson, Victoria L, May, Eric R, Cole, James L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2977
container_issue 27
container_start_page 2967
container_title Biochemistry (Easton)
container_volume 58
creator Mayo, Christopher B
Erlandsen, Heidi
Mouser, David J
Feinstein, Aaron G
Robinson, Victoria L
May, Eric R
Cole, James L
description The RNA-activated protein kinase, PKR, is a key mediator of the innate immunity response to viral infection. Viral double-stranded RNAs induce PKR dimerization and autophosphorylation. The PKR kinase domain forms a back-to-back dimer. However, intermolecular (trans) autophosphorylation is not feasible in this arrangement. We have obtained PKR kinase structures that resolves this dilemma. The kinase protomers interact via the known back-to-back interface as well as a front-to-front interface that is formed by exchange of activation segments. Mutational analysis of the front-to-front interface support a functional role in PKR activation. Molecular dynamics simulations reveal that the activation segment is highly dynamic in the front-to-front dimer and can adopt conformations conducive to phosphoryl transfer. We propose a mechanism where back-to-back dimerization induces a conformational change that activates PKR to phosphorylate a “substrate” kinase docked in a front-to-front geometry. This mechanism may be relevant to related kinases that phosphorylate the eukaryotic initiation factor eIF2α.
doi_str_mv 10.1021/acs.biochem.9b00161
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6615999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250643743</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-4db1c9bc12cbfdb59a4ecd8e01e8b3349fcbf623f18447a42cc1d20231c990503</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlZ_gSCzdDPtzWMe2Qi1-MKC4mMdMpmMTZlOajIj9N-b0lF0o4sQcvOdw733IHSKYYyB4IlUflwYqxZ6NeYFAE7xHhrihEDMOE_20RAA0pjwFAboyPtleDLI2CEaUExYyggfovy5dZ1qOyfr6FJ64yNbRY_Otto00b1ppNfRUzTtWrteWB-O29SyNbY5RgeVrL0-6e8Rer2-epndxvOHm7vZdB5LluVtzMoCK14oTFRRlUXCJdOqzDVgnReUMl6FekpohXPGMsmIUrgkQGhQcUiAjtDFznfdFStdKt20oVexdmYl3UZYacTvn8YsxJv9EGmKE855MDjvDZx977Rvxcp4petaNtp2XhAKYWVJDvA_ShJIGc0YDSjdocpZ752uvjvCILbxiBCP6OMRfTxBdfZzmG_NVx4BmOyArXppO9eE3f5p-QmIyZ8q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250643743</pqid></control><display><type>article</type><title>Structural Basis of Protein Kinase R Autophosphorylation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Mayo, Christopher B ; Erlandsen, Heidi ; Mouser, David J ; Feinstein, Aaron G ; Robinson, Victoria L ; May, Eric R ; Cole, James L</creator><creatorcontrib>Mayo, Christopher B ; Erlandsen, Heidi ; Mouser, David J ; Feinstein, Aaron G ; Robinson, Victoria L ; May, Eric R ; Cole, James L</creatorcontrib><description>The RNA-activated protein kinase, PKR, is a key mediator of the innate immunity response to viral infection. Viral double-stranded RNAs induce PKR dimerization and autophosphorylation. The PKR kinase domain forms a back-to-back dimer. However, intermolecular (trans) autophosphorylation is not feasible in this arrangement. We have obtained PKR kinase structures that resolves this dilemma. The kinase protomers interact via the known back-to-back interface as well as a front-to-front interface that is formed by exchange of activation segments. Mutational analysis of the front-to-front interface support a functional role in PKR activation. Molecular dynamics simulations reveal that the activation segment is highly dynamic in the front-to-front dimer and can adopt conformations conducive to phosphoryl transfer. We propose a mechanism where back-to-back dimerization induces a conformational change that activates PKR to phosphorylate a “substrate” kinase docked in a front-to-front geometry. This mechanism may be relevant to related kinases that phosphorylate the eukaryotic initiation factor eIF2α.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.9b00161</identifier><identifier>PMID: 31246429</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Crystallography, X-Ray ; dimerization ; double-stranded RNA ; eIF-2 Kinase - chemistry ; geometry ; Humans ; immune response ; innate immunity ; molecular dynamics ; Molecular Dynamics Simulation ; mutational analysis ; Phosphorylation ; Protein Conformation ; Protein Domains ; protein kinases ; Protein Multimerization ; protein phosphorylation ; protein subunits ; simulation models</subject><ispartof>Biochemistry (Easton), 2019-07, Vol.58 (27), p.2967-2977</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-4db1c9bc12cbfdb59a4ecd8e01e8b3349fcbf623f18447a42cc1d20231c990503</citedby><cites>FETCH-LOGICAL-a478t-4db1c9bc12cbfdb59a4ecd8e01e8b3349fcbf623f18447a42cc1d20231c990503</cites><orcidid>0000-0003-3838-6394 ; 0000-0002-9028-8364 ; 0000-0001-8826-1990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.9b00161$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.9b00161$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31246429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayo, Christopher B</creatorcontrib><creatorcontrib>Erlandsen, Heidi</creatorcontrib><creatorcontrib>Mouser, David J</creatorcontrib><creatorcontrib>Feinstein, Aaron G</creatorcontrib><creatorcontrib>Robinson, Victoria L</creatorcontrib><creatorcontrib>May, Eric R</creatorcontrib><creatorcontrib>Cole, James L</creatorcontrib><title>Structural Basis of Protein Kinase R Autophosphorylation</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The RNA-activated protein kinase, PKR, is a key mediator of the innate immunity response to viral infection. Viral double-stranded RNAs induce PKR dimerization and autophosphorylation. The PKR kinase domain forms a back-to-back dimer. However, intermolecular (trans) autophosphorylation is not feasible in this arrangement. We have obtained PKR kinase structures that resolves this dilemma. The kinase protomers interact via the known back-to-back interface as well as a front-to-front interface that is formed by exchange of activation segments. Mutational analysis of the front-to-front interface support a functional role in PKR activation. Molecular dynamics simulations reveal that the activation segment is highly dynamic in the front-to-front dimer and can adopt conformations conducive to phosphoryl transfer. We propose a mechanism where back-to-back dimerization induces a conformational change that activates PKR to phosphorylate a “substrate” kinase docked in a front-to-front geometry. This mechanism may be relevant to related kinases that phosphorylate the eukaryotic initiation factor eIF2α.</description><subject>Crystallography, X-Ray</subject><subject>dimerization</subject><subject>double-stranded RNA</subject><subject>eIF-2 Kinase - chemistry</subject><subject>geometry</subject><subject>Humans</subject><subject>immune response</subject><subject>innate immunity</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>mutational analysis</subject><subject>Phosphorylation</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>protein kinases</subject><subject>Protein Multimerization</subject><subject>protein phosphorylation</subject><subject>protein subunits</subject><subject>simulation models</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLAzEUhYMotlZ_gSCzdDPtzWMe2Qi1-MKC4mMdMpmMTZlOajIj9N-b0lF0o4sQcvOdw733IHSKYYyB4IlUflwYqxZ6NeYFAE7xHhrihEDMOE_20RAA0pjwFAboyPtleDLI2CEaUExYyggfovy5dZ1qOyfr6FJ64yNbRY_Otto00b1ppNfRUzTtWrteWB-O29SyNbY5RgeVrL0-6e8Rer2-epndxvOHm7vZdB5LluVtzMoCK14oTFRRlUXCJdOqzDVgnReUMl6FekpohXPGMsmIUrgkQGhQcUiAjtDFznfdFStdKt20oVexdmYl3UZYacTvn8YsxJv9EGmKE855MDjvDZx977Rvxcp4petaNtp2XhAKYWVJDvA_ShJIGc0YDSjdocpZ752uvjvCILbxiBCP6OMRfTxBdfZzmG_NVx4BmOyArXppO9eE3f5p-QmIyZ8q</recordid><startdate>20190709</startdate><enddate>20190709</enddate><creator>Mayo, Christopher B</creator><creator>Erlandsen, Heidi</creator><creator>Mouser, David J</creator><creator>Feinstein, Aaron G</creator><creator>Robinson, Victoria L</creator><creator>May, Eric R</creator><creator>Cole, James L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3838-6394</orcidid><orcidid>https://orcid.org/0000-0002-9028-8364</orcidid><orcidid>https://orcid.org/0000-0001-8826-1990</orcidid></search><sort><creationdate>20190709</creationdate><title>Structural Basis of Protein Kinase R Autophosphorylation</title><author>Mayo, Christopher B ; Erlandsen, Heidi ; Mouser, David J ; Feinstein, Aaron G ; Robinson, Victoria L ; May, Eric R ; Cole, James L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-4db1c9bc12cbfdb59a4ecd8e01e8b3349fcbf623f18447a42cc1d20231c990503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crystallography, X-Ray</topic><topic>dimerization</topic><topic>double-stranded RNA</topic><topic>eIF-2 Kinase - chemistry</topic><topic>geometry</topic><topic>Humans</topic><topic>immune response</topic><topic>innate immunity</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>mutational analysis</topic><topic>Phosphorylation</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>protein kinases</topic><topic>Protein Multimerization</topic><topic>protein phosphorylation</topic><topic>protein subunits</topic><topic>simulation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayo, Christopher B</creatorcontrib><creatorcontrib>Erlandsen, Heidi</creatorcontrib><creatorcontrib>Mouser, David J</creatorcontrib><creatorcontrib>Feinstein, Aaron G</creatorcontrib><creatorcontrib>Robinson, Victoria L</creatorcontrib><creatorcontrib>May, Eric R</creatorcontrib><creatorcontrib>Cole, James L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayo, Christopher B</au><au>Erlandsen, Heidi</au><au>Mouser, David J</au><au>Feinstein, Aaron G</au><au>Robinson, Victoria L</au><au>May, Eric R</au><au>Cole, James L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis of Protein Kinase R Autophosphorylation</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2019-07-09</date><risdate>2019</risdate><volume>58</volume><issue>27</issue><spage>2967</spage><epage>2977</epage><pages>2967-2977</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>The RNA-activated protein kinase, PKR, is a key mediator of the innate immunity response to viral infection. Viral double-stranded RNAs induce PKR dimerization and autophosphorylation. The PKR kinase domain forms a back-to-back dimer. However, intermolecular (trans) autophosphorylation is not feasible in this arrangement. We have obtained PKR kinase structures that resolves this dilemma. The kinase protomers interact via the known back-to-back interface as well as a front-to-front interface that is formed by exchange of activation segments. Mutational analysis of the front-to-front interface support a functional role in PKR activation. Molecular dynamics simulations reveal that the activation segment is highly dynamic in the front-to-front dimer and can adopt conformations conducive to phosphoryl transfer. We propose a mechanism where back-to-back dimerization induces a conformational change that activates PKR to phosphorylate a “substrate” kinase docked in a front-to-front geometry. This mechanism may be relevant to related kinases that phosphorylate the eukaryotic initiation factor eIF2α.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31246429</pmid><doi>10.1021/acs.biochem.9b00161</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3838-6394</orcidid><orcidid>https://orcid.org/0000-0002-9028-8364</orcidid><orcidid>https://orcid.org/0000-0001-8826-1990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2019-07, Vol.58 (27), p.2967-2977
issn 0006-2960
1520-4995
1520-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6615999
source MEDLINE; American Chemical Society Journals
subjects Crystallography, X-Ray
dimerization
double-stranded RNA
eIF-2 Kinase - chemistry
geometry
Humans
immune response
innate immunity
molecular dynamics
Molecular Dynamics Simulation
mutational analysis
Phosphorylation
Protein Conformation
Protein Domains
protein kinases
Protein Multimerization
protein phosphorylation
protein subunits
simulation models
title Structural Basis of Protein Kinase R Autophosphorylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20of%20Protein%20Kinase%20R%20Autophosphorylation&rft.jtitle=Biochemistry%20(Easton)&rft.au=Mayo,%20Christopher%20B&rft.date=2019-07-09&rft.volume=58&rft.issue=27&rft.spage=2967&rft.epage=2977&rft.pages=2967-2977&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.9b00161&rft_dat=%3Cproquest_pubme%3E2250643743%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250643743&rft_id=info:pmid/31246429&rfr_iscdi=true