Molecular interactions underlying liquid−liquid phase separation of the FUS low-complexity domain

The low-complexity domain of the RNA-binding protein FUS (FUS LC) mediates liquid−liquid phase separation (LLPS), but the interactions between the repetitive SYGQ-rich sequence of FUS LC that stabilize the liquid phase are not known in detail. By combining NMR and Raman spectroscopy, mutagenesis, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2019-07, Vol.26 (7), p.637-648
Hauptverfasser: Murthy, Anastasia C., Dignon, Gregory L., Kan, Yelena, Zerze, Gül H., Parekh, Sapun H., Mittal, Jeetain, Fawzi, Nicolas L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue 7
container_start_page 637
container_title Nature structural & molecular biology
container_volume 26
creator Murthy, Anastasia C.
Dignon, Gregory L.
Kan, Yelena
Zerze, Gül H.
Parekh, Sapun H.
Mittal, Jeetain
Fawzi, Nicolas L.
description The low-complexity domain of the RNA-binding protein FUS (FUS LC) mediates liquid−liquid phase separation (LLPS), but the interactions between the repetitive SYGQ-rich sequence of FUS LC that stabilize the liquid phase are not known in detail. By combining NMR and Raman spectroscopy, mutagenesis, and molecular simulation, we demonstrate that heterogeneous interactions involving all residue types underlie LLPS of human FUS LC. We find no evidence that FUS LC adopts conformations with traditional secondary structure elements in the condensed phase; rather, it maintains conformational heterogeneity. We show that hydrogen bonding, π/sp 2 , and hydrophobic interactions all contribute to stabilizing LLPS of FUS LC. In addition to contributions from tyrosine residues, we find that glutamine residues also participate in contacts leading to LLPS of FUS LC. These results support a model in which FUS LC forms dynamic, multivalent interactions via multiple residue types and remains disordered in the densely packed liquid phase. The low-complexity domain of the RNA-binding protein FUS forms dynamic, multivalent interactions via multiple residue types and remains disordered in the densely packed liquid phase.
doi_str_mv 10.1038/s41594-019-0250-x
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6613800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592159231</galeid><sourcerecordid>A592159231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c664t-51e2820b99c01b295190ecddcc9c7a3b8e13ade09adeefbe7a09b09ace25bdc03</originalsourceid><addsrcrecordid>eNp1ks1u1DAQxyMEoh_wAFxQBKceUmwnTuILUlVRqFSEROnZciaTrKvETm2n7L4BZx6RJ8GrlC0rgSzZY89vZjTjf5K8ouSUkrx-5wvKRZERKjLCOMnWT5JDygueCVHzpztb5AfJkfe3JEK8yp8nBzllFSkqdpjAZzsgzINyqTYBnYKgrfHpbFp0w0abPh303azbXz9-LkY6rZTH1OOknNrCqe3SsML04uY6Hez3DOw4DbjWYZO2dlTavEiedWrw-PLhPE5uLj58O_-UXX35eHl-dpVBWRYh4xRZzUgjBBDaMMGpIAhtCyCgUnlTI81Vi0TEDbsGK0VEE2-AjDctkPw4eb_kneZmxBbQBKcGOTk9KreRVmm57zF6JXt7L8uS5jXZJnizJLA-aOlBB4QVWGMQgqS8qjgXEXr7UMXZuxl9kLd2diY2JhnjtCJ1WfJHqlcDSm06GyvCqD3IMy5Y_DeW00id_oOKq8VRx8LY6fi-F3CyFxCZgOvQq9l7eXn9dZ-lCwvOeu-w202CErnVj1z0I6N-5FY_ch1jXv89wl3EH8FEgC2Ajy7To3vs_v9ZfwMGGdMH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251708665</pqid></control><display><type>article</type><title>Molecular interactions underlying liquid−liquid phase separation of the FUS low-complexity domain</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Murthy, Anastasia C. ; Dignon, Gregory L. ; Kan, Yelena ; Zerze, Gül H. ; Parekh, Sapun H. ; Mittal, Jeetain ; Fawzi, Nicolas L.</creator><creatorcontrib>Murthy, Anastasia C. ; Dignon, Gregory L. ; Kan, Yelena ; Zerze, Gül H. ; Parekh, Sapun H. ; Mittal, Jeetain ; Fawzi, Nicolas L. ; Lehigh Univ., Bethlehem, PA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>The low-complexity domain of the RNA-binding protein FUS (FUS LC) mediates liquid−liquid phase separation (LLPS), but the interactions between the repetitive SYGQ-rich sequence of FUS LC that stabilize the liquid phase are not known in detail. By combining NMR and Raman spectroscopy, mutagenesis, and molecular simulation, we demonstrate that heterogeneous interactions involving all residue types underlie LLPS of human FUS LC. We find no evidence that FUS LC adopts conformations with traditional secondary structure elements in the condensed phase; rather, it maintains conformational heterogeneity. We show that hydrogen bonding, π/sp 2 , and hydrophobic interactions all contribute to stabilizing LLPS of FUS LC. In addition to contributions from tyrosine residues, we find that glutamine residues also participate in contacts leading to LLPS of FUS LC. These results support a model in which FUS LC forms dynamic, multivalent interactions via multiple residue types and remains disordered in the densely packed liquid phase. The low-complexity domain of the RNA-binding protein FUS forms dynamic, multivalent interactions via multiple residue types and remains disordered in the densely packed liquid phase.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-019-0250-x</identifier><identifier>PMID: 31270472</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45/535/878 ; 631/45/535/878/1263 ; 631/57/2269 ; BASIC BIOLOGICAL SCIENCES ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Chemical properties ; Compartmental analysis (Biology) ; Complexity ; Composition ; Computer simulation ; Engineering ; FUS protein ; Glutamine ; Health aspects ; Heterogeneity ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Intrinsically disordered proteins ; Intrinsically Disordered Proteins - chemistry ; Life Sciences ; Liquid phases ; Macromolecules ; Membrane Biology ; Models, Molecular ; Molecular biology ; Molecular interactions ; Mutagenesis ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Phase separation ; Phase transformations (Statistical physics) ; Phase Transition ; Polypeptides ; Protein Conformation ; Protein Domains ; Protein research ; Protein Structure ; Protein Structure, Secondary ; Proteins ; Raman spectroscopy ; Residues ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA-binding protein ; RNA-Binding Protein FUS - chemistry ; Secondary structure ; solution-state NMR ; Spectrum analysis ; Transcription factors ; Tyrosine</subject><ispartof>Nature structural &amp; molecular biology, 2019-07, Vol.26 (7), p.637-648</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c664t-51e2820b99c01b295190ecddcc9c7a3b8e13ade09adeefbe7a09b09ace25bdc03</citedby><cites>FETCH-LOGICAL-c664t-51e2820b99c01b295190ecddcc9c7a3b8e13ade09adeefbe7a09b09ace25bdc03</cites><orcidid>0000-0001-8522-1854 ; 0000-0002-2490-697X ; 0000-0002-9725-6402 ; 0000-0001-8016-8652 ; 0000-0001-5483-0577 ; 0000000297256402 ; 0000000185221854 ; 0000000180168652 ; 000000022490697X ; 0000000154830577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-019-0250-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-019-0250-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31270472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1577559$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Murthy, Anastasia C.</creatorcontrib><creatorcontrib>Dignon, Gregory L.</creatorcontrib><creatorcontrib>Kan, Yelena</creatorcontrib><creatorcontrib>Zerze, Gül H.</creatorcontrib><creatorcontrib>Parekh, Sapun H.</creatorcontrib><creatorcontrib>Mittal, Jeetain</creatorcontrib><creatorcontrib>Fawzi, Nicolas L.</creatorcontrib><creatorcontrib>Lehigh Univ., Bethlehem, PA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Molecular interactions underlying liquid−liquid phase separation of the FUS low-complexity domain</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>The low-complexity domain of the RNA-binding protein FUS (FUS LC) mediates liquid−liquid phase separation (LLPS), but the interactions between the repetitive SYGQ-rich sequence of FUS LC that stabilize the liquid phase are not known in detail. By combining NMR and Raman spectroscopy, mutagenesis, and molecular simulation, we demonstrate that heterogeneous interactions involving all residue types underlie LLPS of human FUS LC. We find no evidence that FUS LC adopts conformations with traditional secondary structure elements in the condensed phase; rather, it maintains conformational heterogeneity. We show that hydrogen bonding, π/sp 2 , and hydrophobic interactions all contribute to stabilizing LLPS of FUS LC. In addition to contributions from tyrosine residues, we find that glutamine residues also participate in contacts leading to LLPS of FUS LC. These results support a model in which FUS LC forms dynamic, multivalent interactions via multiple residue types and remains disordered in the densely packed liquid phase. The low-complexity domain of the RNA-binding protein FUS forms dynamic, multivalent interactions via multiple residue types and remains disordered in the densely packed liquid phase.</description><subject>631/45/535/878</subject><subject>631/45/535/878/1263</subject><subject>631/57/2269</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chemical properties</subject><subject>Compartmental analysis (Biology)</subject><subject>Complexity</subject><subject>Composition</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>FUS protein</subject><subject>Glutamine</subject><subject>Health aspects</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Intrinsically disordered proteins</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Life Sciences</subject><subject>Liquid phases</subject><subject>Macromolecules</subject><subject>Membrane Biology</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular interactions</subject><subject>Mutagenesis</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Phase separation</subject><subject>Phase transformations (Statistical physics)</subject><subject>Phase Transition</subject><subject>Polypeptides</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Protein research</subject><subject>Protein Structure</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Raman spectroscopy</subject><subject>Residues</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Protein FUS - chemistry</subject><subject>Secondary structure</subject><subject>solution-state NMR</subject><subject>Spectrum analysis</subject><subject>Transcription factors</subject><subject>Tyrosine</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ks1u1DAQxyMEoh_wAFxQBKceUmwnTuILUlVRqFSEROnZciaTrKvETm2n7L4BZx6RJ8GrlC0rgSzZY89vZjTjf5K8ouSUkrx-5wvKRZERKjLCOMnWT5JDygueCVHzpztb5AfJkfe3JEK8yp8nBzllFSkqdpjAZzsgzINyqTYBnYKgrfHpbFp0w0abPh303azbXz9-LkY6rZTH1OOknNrCqe3SsML04uY6Hez3DOw4DbjWYZO2dlTavEiedWrw-PLhPE5uLj58O_-UXX35eHl-dpVBWRYh4xRZzUgjBBDaMMGpIAhtCyCgUnlTI81Vi0TEDbsGK0VEE2-AjDctkPw4eb_kneZmxBbQBKcGOTk9KreRVmm57zF6JXt7L8uS5jXZJnizJLA-aOlBB4QVWGMQgqS8qjgXEXr7UMXZuxl9kLd2diY2JhnjtCJ1WfJHqlcDSm06GyvCqD3IMy5Y_DeW00id_oOKq8VRx8LY6fi-F3CyFxCZgOvQq9l7eXn9dZ-lCwvOeu-w202CErnVj1z0I6N-5FY_ch1jXv89wl3EH8FEgC2Ajy7To3vs_v9ZfwMGGdMH</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Murthy, Anastasia C.</creator><creator>Dignon, Gregory L.</creator><creator>Kan, Yelena</creator><creator>Zerze, Gül H.</creator><creator>Parekh, Sapun H.</creator><creator>Mittal, Jeetain</creator><creator>Fawzi, Nicolas L.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8522-1854</orcidid><orcidid>https://orcid.org/0000-0002-2490-697X</orcidid><orcidid>https://orcid.org/0000-0002-9725-6402</orcidid><orcidid>https://orcid.org/0000-0001-8016-8652</orcidid><orcidid>https://orcid.org/0000-0001-5483-0577</orcidid><orcidid>https://orcid.org/0000000297256402</orcidid><orcidid>https://orcid.org/0000000185221854</orcidid><orcidid>https://orcid.org/0000000180168652</orcidid><orcidid>https://orcid.org/000000022490697X</orcidid><orcidid>https://orcid.org/0000000154830577</orcidid></search><sort><creationdate>20190701</creationdate><title>Molecular interactions underlying liquid−liquid phase separation of the FUS low-complexity domain</title><author>Murthy, Anastasia C. ; Dignon, Gregory L. ; Kan, Yelena ; Zerze, Gül H. ; Parekh, Sapun H. ; Mittal, Jeetain ; Fawzi, Nicolas L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c664t-51e2820b99c01b295190ecddcc9c7a3b8e13ade09adeefbe7a09b09ace25bdc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/45/535/878</topic><topic>631/45/535/878/1263</topic><topic>631/57/2269</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chemical properties</topic><topic>Compartmental analysis (Biology)</topic><topic>Complexity</topic><topic>Composition</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>FUS protein</topic><topic>Glutamine</topic><topic>Health aspects</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Intrinsically disordered proteins</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Life Sciences</topic><topic>Liquid phases</topic><topic>Macromolecules</topic><topic>Membrane Biology</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular interactions</topic><topic>Mutagenesis</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Phase separation</topic><topic>Phase transformations (Statistical physics)</topic><topic>Phase Transition</topic><topic>Polypeptides</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Protein research</topic><topic>Protein Structure</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Raman spectroscopy</topic><topic>Residues</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Protein FUS - chemistry</topic><topic>Secondary structure</topic><topic>solution-state NMR</topic><topic>Spectrum analysis</topic><topic>Transcription factors</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murthy, Anastasia C.</creatorcontrib><creatorcontrib>Dignon, Gregory L.</creatorcontrib><creatorcontrib>Kan, Yelena</creatorcontrib><creatorcontrib>Zerze, Gül H.</creatorcontrib><creatorcontrib>Parekh, Sapun H.</creatorcontrib><creatorcontrib>Mittal, Jeetain</creatorcontrib><creatorcontrib>Fawzi, Nicolas L.</creatorcontrib><creatorcontrib>Lehigh Univ., Bethlehem, PA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murthy, Anastasia C.</au><au>Dignon, Gregory L.</au><au>Kan, Yelena</au><au>Zerze, Gül H.</au><au>Parekh, Sapun H.</au><au>Mittal, Jeetain</au><au>Fawzi, Nicolas L.</au><aucorp>Lehigh Univ., Bethlehem, PA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular interactions underlying liquid−liquid phase separation of the FUS low-complexity domain</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>26</volume><issue>7</issue><spage>637</spage><epage>648</epage><pages>637-648</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>The low-complexity domain of the RNA-binding protein FUS (FUS LC) mediates liquid−liquid phase separation (LLPS), but the interactions between the repetitive SYGQ-rich sequence of FUS LC that stabilize the liquid phase are not known in detail. By combining NMR and Raman spectroscopy, mutagenesis, and molecular simulation, we demonstrate that heterogeneous interactions involving all residue types underlie LLPS of human FUS LC. We find no evidence that FUS LC adopts conformations with traditional secondary structure elements in the condensed phase; rather, it maintains conformational heterogeneity. We show that hydrogen bonding, π/sp 2 , and hydrophobic interactions all contribute to stabilizing LLPS of FUS LC. In addition to contributions from tyrosine residues, we find that glutamine residues also participate in contacts leading to LLPS of FUS LC. These results support a model in which FUS LC forms dynamic, multivalent interactions via multiple residue types and remains disordered in the densely packed liquid phase. The low-complexity domain of the RNA-binding protein FUS forms dynamic, multivalent interactions via multiple residue types and remains disordered in the densely packed liquid phase.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31270472</pmid><doi>10.1038/s41594-019-0250-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8522-1854</orcidid><orcidid>https://orcid.org/0000-0002-2490-697X</orcidid><orcidid>https://orcid.org/0000-0002-9725-6402</orcidid><orcidid>https://orcid.org/0000-0001-8016-8652</orcidid><orcidid>https://orcid.org/0000-0001-5483-0577</orcidid><orcidid>https://orcid.org/0000000297256402</orcidid><orcidid>https://orcid.org/0000000185221854</orcidid><orcidid>https://orcid.org/0000000180168652</orcidid><orcidid>https://orcid.org/000000022490697X</orcidid><orcidid>https://orcid.org/0000000154830577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2019-07, Vol.26 (7), p.637-648
issn 1545-9993
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6613800
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/45/535/878
631/45/535/878/1263
631/57/2269
BASIC BIOLOGICAL SCIENCES
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Chemical properties
Compartmental analysis (Biology)
Complexity
Composition
Computer simulation
Engineering
FUS protein
Glutamine
Health aspects
Heterogeneity
Humans
Hydrogen Bonding
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Intrinsically disordered proteins
Intrinsically Disordered Proteins - chemistry
Life Sciences
Liquid phases
Macromolecules
Membrane Biology
Models, Molecular
Molecular biology
Molecular interactions
Mutagenesis
NMR
NMR spectroscopy
Nuclear magnetic resonance
Phase separation
Phase transformations (Statistical physics)
Phase Transition
Polypeptides
Protein Conformation
Protein Domains
Protein research
Protein Structure
Protein Structure, Secondary
Proteins
Raman spectroscopy
Residues
Ribonucleic acid
RNA
RNA polymerase
RNA-binding protein
RNA-Binding Protein FUS - chemistry
Secondary structure
solution-state NMR
Spectrum analysis
Transcription factors
Tyrosine
title Molecular interactions underlying liquid−liquid phase separation of the FUS low-complexity domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20interactions%20underlying%20liquid%E2%88%92liquid%20phase%20separation%20of%20the%20FUS%20low-complexity%20domain&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Murthy,%20Anastasia%20C.&rft.aucorp=Lehigh%20Univ.,%20Bethlehem,%20PA%20(United%20States)&rft.date=2019-07-01&rft.volume=26&rft.issue=7&rft.spage=637&rft.epage=648&rft.pages=637-648&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-019-0250-x&rft_dat=%3Cgale_pubme%3EA592159231%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251708665&rft_id=info:pmid/31270472&rft_galeid=A592159231&rfr_iscdi=true