Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell

The factors limiting the performance of alternative polycrystalline solar cells as compared with their single‐crystal counterparts are not fully understood, but are thought to originate from structural and chemical heterogeneities at various length scales. Here, it is demonstrated that multimodal fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation 2019-07, Vol.26 (4), p.1316-1321
Hauptverfasser: Ulvestad, A., Hruszkewycz, S. O., Holt, M. V., Hill, M. O., Calvo-Almazán, I., Maddali, S., Huang, X., Yan, H., Nazaretski, E., Chu, Y. S., Lauhon, L. J., Rodkey, N., Bertoni, M. I., Stuckelberger, M. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1321
container_issue 4
container_start_page 1316
container_title Journal of synchrotron radiation
container_volume 26
creator Ulvestad, A.
Hruszkewycz, S. O.
Holt, M. V.
Hill, M. O.
Calvo-Almazán, I.
Maddali, S.
Huang, X.
Yan, H.
Nazaretski, E.
Chu, Y. S.
Lauhon, L. J.
Rodkey, N.
Bertoni, M. I.
Stuckelberger, M. E.
description The factors limiting the performance of alternative polycrystalline solar cells as compared with their single‐crystal counterparts are not fully understood, but are thought to originate from structural and chemical heterogeneities at various length scales. Here, it is demonstrated that multimodal focused nanobeam X‐ray microscopy can be used to reveal multiple aspects of the problem in a single measurement by mapping chemical makeup, lattice structure and charge collection efficiency simultaneously in a working solar cell. This approach was applied to micrometre‐sized individual grains in a Cu(In,Ga)Se2 polycrystalline film packaged in a working device. It was found that, near grain boundaries, collection efficiency is increased, and that in these regions the lattice parameter of the material is expanded. These observations are discussed in terms of possible physical models and future experiments. A multimodal in situ nanofocused X‐ray microscopy approach is demonstrated and applied to a working polycrystalline thin film solar cell that revealed chemical, structural and electronic heterogeneity from a single measurement.
doi_str_mv 10.1107/S1600577519003606
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6613129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253076787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5522-d60c91c9be974ecb421a87fe7b41b4a197ca397ca3b2f06fef7baa666eaae9413</originalsourceid><addsrcrecordid>eNqFkctu1TAQhiMEohd4ADbIgg2bA7aT2McbJFRRLipiUUCwsiY-41NXjh3spCi7PgLPyJPgcEpVYMHGHv3-5h_PTFU9YPQpY1Q-O2WC0lbKlilKa0HFrWp_kVaLdvtGvFcd5HxOKROS13ervZpx2TSC7lf23eRH18cNePL5x-X3BDNxPWxd2JJoyTaBC0X2eIGeDCkOmEaHmUDYkBLbmHoIBokLBMgQ_WzSnEfw3gUkOXpIxKD396o7FnzG-1f3YfXx-OWHo9erk_ev3hy9OFmZtuV8tRHUKGZUh0o2aLqGM1hLi7JrWNcAU9JA_evouKXCopUdgBACAVA1rD6snu98h6nrcWMwjAm8HlLpKc06gtN_vgR3prfxQgvBylBUMXi0M4h5dDobN6I5MzEENKNmLWskrQv05KpKil8nzKPuXV7ahIBxyprzVlC1Vqot6OO_0PM4pVBmsFA1lUKuZaHYjjIp5pzQXv-YUb2sWv-z6pLz8Gar1xm_d1sAtQO-OY_z_x3129Mv_PhTyyivfwIm17f1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253076787</pqid></control><display><type>article</type><title>Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell</title><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ulvestad, A. ; Hruszkewycz, S. O. ; Holt, M. V. ; Hill, M. O. ; Calvo-Almazán, I. ; Maddali, S. ; Huang, X. ; Yan, H. ; Nazaretski, E. ; Chu, Y. S. ; Lauhon, L. J. ; Rodkey, N. ; Bertoni, M. I. ; Stuckelberger, M. E.</creator><creatorcontrib>Ulvestad, A. ; Hruszkewycz, S. O. ; Holt, M. V. ; Hill, M. O. ; Calvo-Almazán, I. ; Maddali, S. ; Huang, X. ; Yan, H. ; Nazaretski, E. ; Chu, Y. S. ; Lauhon, L. J. ; Rodkey, N. ; Bertoni, M. I. ; Stuckelberger, M. E. ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States) ; Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><description>The factors limiting the performance of alternative polycrystalline solar cells as compared with their single‐crystal counterparts are not fully understood, but are thought to originate from structural and chemical heterogeneities at various length scales. Here, it is demonstrated that multimodal focused nanobeam X‐ray microscopy can be used to reveal multiple aspects of the problem in a single measurement by mapping chemical makeup, lattice structure and charge collection efficiency simultaneously in a working solar cell. This approach was applied to micrometre‐sized individual grains in a Cu(In,Ga)Se2 polycrystalline film packaged in a working device. It was found that, near grain boundaries, collection efficiency is increased, and that in these regions the lattice parameter of the material is expanded. These observations are discussed in terms of possible physical models and future experiments. A multimodal in situ nanofocused X‐ray microscopy approach is demonstrated and applied to a working polycrystalline thin film solar cell that revealed chemical, structural and electronic heterogeneity from a single measurement.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S1600577519003606</identifier><identifier>PMID: 31274460</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Charge efficiency ; Collection ; Copper indium gallium selenides ; Grain boundaries ; Mapping ; MATERIALS SCIENCE ; multimodal characterization ; Organic chemistry ; Photovoltaic cells ; Polycrystals ; Research Papers ; scanning nanodiffraction ; solar cell materials ; Solar cells ; X-ray-beam-induced current</subject><ispartof>Journal of synchrotron radiation, 2019-07, Vol.26 (4), p.1316-1321</ispartof><rights>2019 Andrew Ulvestad et al. published by IUCr Journals.</rights><rights>open access.</rights><rights>Copyright Wiley Subscription Services, Inc. Jul 2019</rights><rights>Andrew Ulvestad et al. 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5522-d60c91c9be974ecb421a87fe7b41b4a197ca397ca3b2f06fef7baa666eaae9413</citedby><cites>FETCH-LOGICAL-c5522-d60c91c9be974ecb421a87fe7b41b4a197ca397ca3b2f06fef7baa666eaae9413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31274460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1514703$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ulvestad, A.</creatorcontrib><creatorcontrib>Hruszkewycz, S. O.</creatorcontrib><creatorcontrib>Holt, M. V.</creatorcontrib><creatorcontrib>Hill, M. O.</creatorcontrib><creatorcontrib>Calvo-Almazán, I.</creatorcontrib><creatorcontrib>Maddali, S.</creatorcontrib><creatorcontrib>Huang, X.</creatorcontrib><creatorcontrib>Yan, H.</creatorcontrib><creatorcontrib>Nazaretski, E.</creatorcontrib><creatorcontrib>Chu, Y. S.</creatorcontrib><creatorcontrib>Lauhon, L. J.</creatorcontrib><creatorcontrib>Rodkey, N.</creatorcontrib><creatorcontrib>Bertoni, M. I.</creatorcontrib><creatorcontrib>Stuckelberger, M. E.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><title>Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell</title><title>Journal of synchrotron radiation</title><addtitle>J Synchrotron Radiat</addtitle><description>The factors limiting the performance of alternative polycrystalline solar cells as compared with their single‐crystal counterparts are not fully understood, but are thought to originate from structural and chemical heterogeneities at various length scales. Here, it is demonstrated that multimodal focused nanobeam X‐ray microscopy can be used to reveal multiple aspects of the problem in a single measurement by mapping chemical makeup, lattice structure and charge collection efficiency simultaneously in a working solar cell. This approach was applied to micrometre‐sized individual grains in a Cu(In,Ga)Se2 polycrystalline film packaged in a working device. It was found that, near grain boundaries, collection efficiency is increased, and that in these regions the lattice parameter of the material is expanded. These observations are discussed in terms of possible physical models and future experiments. A multimodal in situ nanofocused X‐ray microscopy approach is demonstrated and applied to a working polycrystalline thin film solar cell that revealed chemical, structural and electronic heterogeneity from a single measurement.</description><subject>Charge efficiency</subject><subject>Collection</subject><subject>Copper indium gallium selenides</subject><subject>Grain boundaries</subject><subject>Mapping</subject><subject>MATERIALS SCIENCE</subject><subject>multimodal characterization</subject><subject>Organic chemistry</subject><subject>Photovoltaic cells</subject><subject>Polycrystals</subject><subject>Research Papers</subject><subject>scanning nanodiffraction</subject><subject>solar cell materials</subject><subject>Solar cells</subject><subject>X-ray-beam-induced current</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkctu1TAQhiMEohd4ADbIgg2bA7aT2McbJFRRLipiUUCwsiY-41NXjh3spCi7PgLPyJPgcEpVYMHGHv3-5h_PTFU9YPQpY1Q-O2WC0lbKlilKa0HFrWp_kVaLdvtGvFcd5HxOKROS13ervZpx2TSC7lf23eRH18cNePL5x-X3BDNxPWxd2JJoyTaBC0X2eIGeDCkOmEaHmUDYkBLbmHoIBokLBMgQ_WzSnEfw3gUkOXpIxKD396o7FnzG-1f3YfXx-OWHo9erk_ev3hy9OFmZtuV8tRHUKGZUh0o2aLqGM1hLi7JrWNcAU9JA_evouKXCopUdgBACAVA1rD6snu98h6nrcWMwjAm8HlLpKc06gtN_vgR3prfxQgvBylBUMXi0M4h5dDobN6I5MzEENKNmLWskrQv05KpKil8nzKPuXV7ahIBxyprzVlC1Vqot6OO_0PM4pVBmsFA1lUKuZaHYjjIp5pzQXv-YUb2sWv-z6pLz8Gar1xm_d1sAtQO-OY_z_x3129Mv_PhTyyivfwIm17f1</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Ulvestad, A.</creator><creator>Hruszkewycz, S. O.</creator><creator>Holt, M. V.</creator><creator>Hill, M. O.</creator><creator>Calvo-Almazán, I.</creator><creator>Maddali, S.</creator><creator>Huang, X.</creator><creator>Yan, H.</creator><creator>Nazaretski, E.</creator><creator>Chu, Y. S.</creator><creator>Lauhon, L. J.</creator><creator>Rodkey, N.</creator><creator>Bertoni, M. I.</creator><creator>Stuckelberger, M. E.</creator><general>International Union of Crystallography</general><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>201907</creationdate><title>Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell</title><author>Ulvestad, A. ; Hruszkewycz, S. O. ; Holt, M. V. ; Hill, M. O. ; Calvo-Almazán, I. ; Maddali, S. ; Huang, X. ; Yan, H. ; Nazaretski, E. ; Chu, Y. S. ; Lauhon, L. J. ; Rodkey, N. ; Bertoni, M. I. ; Stuckelberger, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5522-d60c91c9be974ecb421a87fe7b41b4a197ca397ca3b2f06fef7baa666eaae9413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge efficiency</topic><topic>Collection</topic><topic>Copper indium gallium selenides</topic><topic>Grain boundaries</topic><topic>Mapping</topic><topic>MATERIALS SCIENCE</topic><topic>multimodal characterization</topic><topic>Organic chemistry</topic><topic>Photovoltaic cells</topic><topic>Polycrystals</topic><topic>Research Papers</topic><topic>scanning nanodiffraction</topic><topic>solar cell materials</topic><topic>Solar cells</topic><topic>X-ray-beam-induced current</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulvestad, A.</creatorcontrib><creatorcontrib>Hruszkewycz, S. O.</creatorcontrib><creatorcontrib>Holt, M. V.</creatorcontrib><creatorcontrib>Hill, M. O.</creatorcontrib><creatorcontrib>Calvo-Almazán, I.</creatorcontrib><creatorcontrib>Maddali, S.</creatorcontrib><creatorcontrib>Huang, X.</creatorcontrib><creatorcontrib>Yan, H.</creatorcontrib><creatorcontrib>Nazaretski, E.</creatorcontrib><creatorcontrib>Chu, Y. S.</creatorcontrib><creatorcontrib>Lauhon, L. J.</creatorcontrib><creatorcontrib>Rodkey, N.</creatorcontrib><creatorcontrib>Bertoni, M. I.</creatorcontrib><creatorcontrib>Stuckelberger, M. E.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulvestad, A.</au><au>Hruszkewycz, S. O.</au><au>Holt, M. V.</au><au>Hill, M. O.</au><au>Calvo-Almazán, I.</au><au>Maddali, S.</au><au>Huang, X.</au><au>Yan, H.</au><au>Nazaretski, E.</au><au>Chu, Y. S.</au><au>Lauhon, L. J.</au><au>Rodkey, N.</au><au>Bertoni, M. I.</au><au>Stuckelberger, M. E.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><aucorp>Arizona State Univ., Tempe, AZ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J Synchrotron Radiat</addtitle><date>2019-07</date><risdate>2019</risdate><volume>26</volume><issue>4</issue><spage>1316</spage><epage>1321</epage><pages>1316-1321</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>The factors limiting the performance of alternative polycrystalline solar cells as compared with their single‐crystal counterparts are not fully understood, but are thought to originate from structural and chemical heterogeneities at various length scales. Here, it is demonstrated that multimodal focused nanobeam X‐ray microscopy can be used to reveal multiple aspects of the problem in a single measurement by mapping chemical makeup, lattice structure and charge collection efficiency simultaneously in a working solar cell. This approach was applied to micrometre‐sized individual grains in a Cu(In,Ga)Se2 polycrystalline film packaged in a working device. It was found that, near grain boundaries, collection efficiency is increased, and that in these regions the lattice parameter of the material is expanded. These observations are discussed in terms of possible physical models and future experiments. A multimodal in situ nanofocused X‐ray microscopy approach is demonstrated and applied to a working polycrystalline thin film solar cell that revealed chemical, structural and electronic heterogeneity from a single measurement.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>31274460</pmid><doi>10.1107/S1600577519003606</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5775
ispartof Journal of synchrotron radiation, 2019-07, Vol.26 (4), p.1316-1321
issn 1600-5775
0909-0495
1600-5775
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6613129
source Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete; PubMed Central; Free Full-Text Journals in Chemistry
subjects Charge efficiency
Collection
Copper indium gallium selenides
Grain boundaries
Mapping
MATERIALS SCIENCE
multimodal characterization
Organic chemistry
Photovoltaic cells
Polycrystals
Research Papers
scanning nanodiffraction
solar cell materials
Solar cells
X-ray-beam-induced current
title Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20X%E2%80%90ray%20imaging%20of%20grain%E2%80%90level%20properties%20and%20performance%20in%20a%20polycrystalline%20solar%20cell&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Ulvestad,%20A.&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-07&rft.volume=26&rft.issue=4&rft.spage=1316&rft.epage=1321&rft.pages=1316-1321&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S1600577519003606&rft_dat=%3Cproquest_pubme%3E2253076787%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253076787&rft_id=info:pmid/31274460&rfr_iscdi=true