Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell
The factors limiting the performance of alternative polycrystalline solar cells as compared with their single‐crystal counterparts are not fully understood, but are thought to originate from structural and chemical heterogeneities at various length scales. Here, it is demonstrated that multimodal fo...
Gespeichert in:
Veröffentlicht in: | Journal of synchrotron radiation 2019-07, Vol.26 (4), p.1316-1321 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1321 |
---|---|
container_issue | 4 |
container_start_page | 1316 |
container_title | Journal of synchrotron radiation |
container_volume | 26 |
creator | Ulvestad, A. Hruszkewycz, S. O. Holt, M. V. Hill, M. O. Calvo-Almazán, I. Maddali, S. Huang, X. Yan, H. Nazaretski, E. Chu, Y. S. Lauhon, L. J. Rodkey, N. Bertoni, M. I. Stuckelberger, M. E. |
description | The factors limiting the performance of alternative polycrystalline solar cells as compared with their single‐crystal counterparts are not fully understood, but are thought to originate from structural and chemical heterogeneities at various length scales. Here, it is demonstrated that multimodal focused nanobeam X‐ray microscopy can be used to reveal multiple aspects of the problem in a single measurement by mapping chemical makeup, lattice structure and charge collection efficiency simultaneously in a working solar cell. This approach was applied to micrometre‐sized individual grains in a Cu(In,Ga)Se2 polycrystalline film packaged in a working device. It was found that, near grain boundaries, collection efficiency is increased, and that in these regions the lattice parameter of the material is expanded. These observations are discussed in terms of possible physical models and future experiments.
A multimodal in situ nanofocused X‐ray microscopy approach is demonstrated and applied to a working polycrystalline thin film solar cell that revealed chemical, structural and electronic heterogeneity from a single measurement. |
doi_str_mv | 10.1107/S1600577519003606 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6613129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253076787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5522-d60c91c9be974ecb421a87fe7b41b4a197ca397ca3b2f06fef7baa666eaae9413</originalsourceid><addsrcrecordid>eNqFkctu1TAQhiMEohd4ADbIgg2bA7aT2McbJFRRLipiUUCwsiY-41NXjh3spCi7PgLPyJPgcEpVYMHGHv3-5h_PTFU9YPQpY1Q-O2WC0lbKlilKa0HFrWp_kVaLdvtGvFcd5HxOKROS13ervZpx2TSC7lf23eRH18cNePL5x-X3BDNxPWxd2JJoyTaBC0X2eIGeDCkOmEaHmUDYkBLbmHoIBokLBMgQ_WzSnEfw3gUkOXpIxKD396o7FnzG-1f3YfXx-OWHo9erk_ev3hy9OFmZtuV8tRHUKGZUh0o2aLqGM1hLi7JrWNcAU9JA_evouKXCopUdgBACAVA1rD6snu98h6nrcWMwjAm8HlLpKc06gtN_vgR3prfxQgvBylBUMXi0M4h5dDobN6I5MzEENKNmLWskrQv05KpKil8nzKPuXV7ahIBxyprzVlC1Vqot6OO_0PM4pVBmsFA1lUKuZaHYjjIp5pzQXv-YUb2sWv-z6pLz8Gar1xm_d1sAtQO-OY_z_x3129Mv_PhTyyivfwIm17f1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253076787</pqid></control><display><type>article</type><title>Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell</title><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ulvestad, A. ; Hruszkewycz, S. O. ; Holt, M. V. ; Hill, M. O. ; Calvo-Almazán, I. ; Maddali, S. ; Huang, X. ; Yan, H. ; Nazaretski, E. ; Chu, Y. S. ; Lauhon, L. J. ; Rodkey, N. ; Bertoni, M. I. ; Stuckelberger, M. E.</creator><creatorcontrib>Ulvestad, A. ; Hruszkewycz, S. O. ; Holt, M. V. ; Hill, M. O. ; Calvo-Almazán, I. ; Maddali, S. ; Huang, X. ; Yan, H. ; Nazaretski, E. ; Chu, Y. S. ; Lauhon, L. J. ; Rodkey, N. ; Bertoni, M. I. ; Stuckelberger, M. E. ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States) ; Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><description>The factors limiting the performance of alternative polycrystalline solar cells as compared with their single‐crystal counterparts are not fully understood, but are thought to originate from structural and chemical heterogeneities at various length scales. Here, it is demonstrated that multimodal focused nanobeam X‐ray microscopy can be used to reveal multiple aspects of the problem in a single measurement by mapping chemical makeup, lattice structure and charge collection efficiency simultaneously in a working solar cell. This approach was applied to micrometre‐sized individual grains in a Cu(In,Ga)Se2 polycrystalline film packaged in a working device. It was found that, near grain boundaries, collection efficiency is increased, and that in these regions the lattice parameter of the material is expanded. These observations are discussed in terms of possible physical models and future experiments.
A multimodal in situ nanofocused X‐ray microscopy approach is demonstrated and applied to a working polycrystalline thin film solar cell that revealed chemical, structural and electronic heterogeneity from a single measurement.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S1600577519003606</identifier><identifier>PMID: 31274460</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Charge efficiency ; Collection ; Copper indium gallium selenides ; Grain boundaries ; Mapping ; MATERIALS SCIENCE ; multimodal characterization ; Organic chemistry ; Photovoltaic cells ; Polycrystals ; Research Papers ; scanning nanodiffraction ; solar cell materials ; Solar cells ; X-ray-beam-induced current</subject><ispartof>Journal of synchrotron radiation, 2019-07, Vol.26 (4), p.1316-1321</ispartof><rights>2019 Andrew Ulvestad et al. published by IUCr Journals.</rights><rights>open access.</rights><rights>Copyright Wiley Subscription Services, Inc. Jul 2019</rights><rights>Andrew Ulvestad et al. 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5522-d60c91c9be974ecb421a87fe7b41b4a197ca397ca3b2f06fef7baa666eaae9413</citedby><cites>FETCH-LOGICAL-c5522-d60c91c9be974ecb421a87fe7b41b4a197ca397ca3b2f06fef7baa666eaae9413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31274460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1514703$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ulvestad, A.</creatorcontrib><creatorcontrib>Hruszkewycz, S. O.</creatorcontrib><creatorcontrib>Holt, M. V.</creatorcontrib><creatorcontrib>Hill, M. O.</creatorcontrib><creatorcontrib>Calvo-Almazán, I.</creatorcontrib><creatorcontrib>Maddali, S.</creatorcontrib><creatorcontrib>Huang, X.</creatorcontrib><creatorcontrib>Yan, H.</creatorcontrib><creatorcontrib>Nazaretski, E.</creatorcontrib><creatorcontrib>Chu, Y. S.</creatorcontrib><creatorcontrib>Lauhon, L. J.</creatorcontrib><creatorcontrib>Rodkey, N.</creatorcontrib><creatorcontrib>Bertoni, M. I.</creatorcontrib><creatorcontrib>Stuckelberger, M. E.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><title>Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell</title><title>Journal of synchrotron radiation</title><addtitle>J Synchrotron Radiat</addtitle><description>The factors limiting the performance of alternative polycrystalline solar cells as compared with their single‐crystal counterparts are not fully understood, but are thought to originate from structural and chemical heterogeneities at various length scales. Here, it is demonstrated that multimodal focused nanobeam X‐ray microscopy can be used to reveal multiple aspects of the problem in a single measurement by mapping chemical makeup, lattice structure and charge collection efficiency simultaneously in a working solar cell. This approach was applied to micrometre‐sized individual grains in a Cu(In,Ga)Se2 polycrystalline film packaged in a working device. It was found that, near grain boundaries, collection efficiency is increased, and that in these regions the lattice parameter of the material is expanded. These observations are discussed in terms of possible physical models and future experiments.
A multimodal in situ nanofocused X‐ray microscopy approach is demonstrated and applied to a working polycrystalline thin film solar cell that revealed chemical, structural and electronic heterogeneity from a single measurement.</description><subject>Charge efficiency</subject><subject>Collection</subject><subject>Copper indium gallium selenides</subject><subject>Grain boundaries</subject><subject>Mapping</subject><subject>MATERIALS SCIENCE</subject><subject>multimodal characterization</subject><subject>Organic chemistry</subject><subject>Photovoltaic cells</subject><subject>Polycrystals</subject><subject>Research Papers</subject><subject>scanning nanodiffraction</subject><subject>solar cell materials</subject><subject>Solar cells</subject><subject>X-ray-beam-induced current</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkctu1TAQhiMEohd4ADbIgg2bA7aT2McbJFRRLipiUUCwsiY-41NXjh3spCi7PgLPyJPgcEpVYMHGHv3-5h_PTFU9YPQpY1Q-O2WC0lbKlilKa0HFrWp_kVaLdvtGvFcd5HxOKROS13ervZpx2TSC7lf23eRH18cNePL5x-X3BDNxPWxd2JJoyTaBC0X2eIGeDCkOmEaHmUDYkBLbmHoIBokLBMgQ_WzSnEfw3gUkOXpIxKD396o7FnzG-1f3YfXx-OWHo9erk_ev3hy9OFmZtuV8tRHUKGZUh0o2aLqGM1hLi7JrWNcAU9JA_evouKXCopUdgBACAVA1rD6snu98h6nrcWMwjAm8HlLpKc06gtN_vgR3prfxQgvBylBUMXi0M4h5dDobN6I5MzEENKNmLWskrQv05KpKil8nzKPuXV7ahIBxyprzVlC1Vqot6OO_0PM4pVBmsFA1lUKuZaHYjjIp5pzQXv-YUb2sWv-z6pLz8Gar1xm_d1sAtQO-OY_z_x3129Mv_PhTyyivfwIm17f1</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Ulvestad, A.</creator><creator>Hruszkewycz, S. O.</creator><creator>Holt, M. V.</creator><creator>Hill, M. O.</creator><creator>Calvo-Almazán, I.</creator><creator>Maddali, S.</creator><creator>Huang, X.</creator><creator>Yan, H.</creator><creator>Nazaretski, E.</creator><creator>Chu, Y. S.</creator><creator>Lauhon, L. J.</creator><creator>Rodkey, N.</creator><creator>Bertoni, M. I.</creator><creator>Stuckelberger, M. E.</creator><general>International Union of Crystallography</general><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>201907</creationdate><title>Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell</title><author>Ulvestad, A. ; Hruszkewycz, S. O. ; Holt, M. V. ; Hill, M. O. ; Calvo-Almazán, I. ; Maddali, S. ; Huang, X. ; Yan, H. ; Nazaretski, E. ; Chu, Y. S. ; Lauhon, L. J. ; Rodkey, N. ; Bertoni, M. I. ; Stuckelberger, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5522-d60c91c9be974ecb421a87fe7b41b4a197ca397ca3b2f06fef7baa666eaae9413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge efficiency</topic><topic>Collection</topic><topic>Copper indium gallium selenides</topic><topic>Grain boundaries</topic><topic>Mapping</topic><topic>MATERIALS SCIENCE</topic><topic>multimodal characterization</topic><topic>Organic chemistry</topic><topic>Photovoltaic cells</topic><topic>Polycrystals</topic><topic>Research Papers</topic><topic>scanning nanodiffraction</topic><topic>solar cell materials</topic><topic>Solar cells</topic><topic>X-ray-beam-induced current</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulvestad, A.</creatorcontrib><creatorcontrib>Hruszkewycz, S. O.</creatorcontrib><creatorcontrib>Holt, M. V.</creatorcontrib><creatorcontrib>Hill, M. O.</creatorcontrib><creatorcontrib>Calvo-Almazán, I.</creatorcontrib><creatorcontrib>Maddali, S.</creatorcontrib><creatorcontrib>Huang, X.</creatorcontrib><creatorcontrib>Yan, H.</creatorcontrib><creatorcontrib>Nazaretski, E.</creatorcontrib><creatorcontrib>Chu, Y. S.</creatorcontrib><creatorcontrib>Lauhon, L. J.</creatorcontrib><creatorcontrib>Rodkey, N.</creatorcontrib><creatorcontrib>Bertoni, M. I.</creatorcontrib><creatorcontrib>Stuckelberger, M. E.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Arizona State Univ., Tempe, AZ (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulvestad, A.</au><au>Hruszkewycz, S. O.</au><au>Holt, M. V.</au><au>Hill, M. O.</au><au>Calvo-Almazán, I.</au><au>Maddali, S.</au><au>Huang, X.</au><au>Yan, H.</au><au>Nazaretski, E.</au><au>Chu, Y. S.</au><au>Lauhon, L. J.</au><au>Rodkey, N.</au><au>Bertoni, M. I.</au><au>Stuckelberger, M. E.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><aucorp>Arizona State Univ., Tempe, AZ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J Synchrotron Radiat</addtitle><date>2019-07</date><risdate>2019</risdate><volume>26</volume><issue>4</issue><spage>1316</spage><epage>1321</epage><pages>1316-1321</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>The factors limiting the performance of alternative polycrystalline solar cells as compared with their single‐crystal counterparts are not fully understood, but are thought to originate from structural and chemical heterogeneities at various length scales. Here, it is demonstrated that multimodal focused nanobeam X‐ray microscopy can be used to reveal multiple aspects of the problem in a single measurement by mapping chemical makeup, lattice structure and charge collection efficiency simultaneously in a working solar cell. This approach was applied to micrometre‐sized individual grains in a Cu(In,Ga)Se2 polycrystalline film packaged in a working device. It was found that, near grain boundaries, collection efficiency is increased, and that in these regions the lattice parameter of the material is expanded. These observations are discussed in terms of possible physical models and future experiments.
A multimodal in situ nanofocused X‐ray microscopy approach is demonstrated and applied to a working polycrystalline thin film solar cell that revealed chemical, structural and electronic heterogeneity from a single measurement.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>31274460</pmid><doi>10.1107/S1600577519003606</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5775 |
ispartof | Journal of synchrotron radiation, 2019-07, Vol.26 (4), p.1316-1321 |
issn | 1600-5775 0909-0495 1600-5775 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6613129 |
source | Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Charge efficiency Collection Copper indium gallium selenides Grain boundaries Mapping MATERIALS SCIENCE multimodal characterization Organic chemistry Photovoltaic cells Polycrystals Research Papers scanning nanodiffraction solar cell materials Solar cells X-ray-beam-induced current |
title | Multimodal X‐ray imaging of grain‐level properties and performance in a polycrystalline solar cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20X%E2%80%90ray%20imaging%20of%20grain%E2%80%90level%20properties%20and%20performance%20in%20a%20polycrystalline%20solar%20cell&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Ulvestad,%20A.&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-07&rft.volume=26&rft.issue=4&rft.spage=1316&rft.epage=1321&rft.pages=1316-1321&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S1600577519003606&rft_dat=%3Cproquest_pubme%3E2253076787%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253076787&rft_id=info:pmid/31274460&rfr_iscdi=true |