Rotation equivariant and invariant neural networks for microscopy image analysis

Abstract Motivation Neural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microsco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2019-07, Vol.35 (14), p.i530-i537
Hauptverfasser: Chidester, Benjamin, Zhou, Tianming, Do, Minh N, Ma, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page i537
container_issue 14
container_start_page i530
container_title Bioinformatics
container_volume 35
creator Chidester, Benjamin
Zhou, Tianming
Do, Minh N
Ma, Jian
description Abstract Motivation Neural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microscopy image data is rotation invariance. Here we consider the application of two schemes for encoding rotation equivariance and invariance in a convolutional neural network, namely, the group-equivariant CNN (G-CNN), and a new architecture with simple, efficient conic convolution, for classifying microscopy images. We additionally integrate the 2D-discrete-Fourier transform (2D-DFT) as an effective means for encoding global rotational invariance. We call our new method the Conic Convolution and DFT Network (CFNet). Results We evaluated the efficacy of CFNet and G-CNN as compared to a standard CNN for several different image classification tasks, including simulated and real microscopy images of subcellular protein localization, and demonstrated improved performance. We believe CFNet has the potential to improve many high-throughput microscopy image analysis applications. Availability and implementation Source code of CFNet is available at: https://github.com/bchidest/CFNet. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btz353
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6612823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz353</oup_id><sourcerecordid>2289573272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-a23d4ddf70ce4a2421fff5fdf0727d21203dba19ced19327abce590ee69ed2ba3</originalsourceid><addsrcrecordid>eNqNUdtKwzAYDqK4OX0EpZfe1OXQtOuNIMMTDBTR65DmMKNtsiXtZD69GZ3D3Xn1J_zfKfkAOEfwCsGSjCvjjNXON7w1Ioyr9ptQcgCGKMthiiEtD-OZ5EWaTSAZgJMQPiCkKMuyYzAgiCKY53gInl9cGxWcTdSyMyvuDbdtwq1MjP29WdV5XsfRfjn_GZLomjRGeBeEW6wT0_C5ihRer4MJp-BI8zqos-0cgbe729fpQzp7un-c3sxSQdGkTTkmMpNSF1CojOMMI6011VLDAhcSIwyJrDgqhZKoJLjglVC0hErlpZK44mQErnvdRVc1Sgpl2xiSLXyM49fMccP2N9a8s7lbsTxHeIJJFLjcCni37FRoWWOCUHXNrXJdYBhPSlpEaxyhtIdu3hy80jsbBNmmDbbfBuvbiLyLvxl3rN_vjwDYA1y3-KfmDyCJoU8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289573272</pqid></control><display><type>article</type><title>Rotation equivariant and invariant neural networks for microscopy image analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chidester, Benjamin ; Zhou, Tianming ; Do, Minh N ; Ma, Jian</creator><creatorcontrib>Chidester, Benjamin ; Zhou, Tianming ; Do, Minh N ; Ma, Jian</creatorcontrib><description>Abstract Motivation Neural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microscopy image data is rotation invariance. Here we consider the application of two schemes for encoding rotation equivariance and invariance in a convolutional neural network, namely, the group-equivariant CNN (G-CNN), and a new architecture with simple, efficient conic convolution, for classifying microscopy images. We additionally integrate the 2D-discrete-Fourier transform (2D-DFT) as an effective means for encoding global rotational invariance. We call our new method the Conic Convolution and DFT Network (CFNet). Results We evaluated the efficacy of CFNet and G-CNN as compared to a standard CNN for several different image classification tasks, including simulated and real microscopy images of subcellular protein localization, and demonstrated improved performance. We believe CFNet has the potential to improve many high-throughput microscopy image analysis applications. Availability and implementation Source code of CFNet is available at: https://github.com/bchidest/CFNet. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz353</identifier><identifier>PMID: 31510662</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Ismb/Eccb 2019 Conference Proceedings</subject><ispartof>Bioinformatics, 2019-07, Vol.35 (14), p.i530-i537</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-a23d4ddf70ce4a2421fff5fdf0727d21203dba19ced19327abce590ee69ed2ba3</citedby><cites>FETCH-LOGICAL-c518t-a23d4ddf70ce4a2421fff5fdf0727d21203dba19ced19327abce590ee69ed2ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612823/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612823/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31510662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chidester, Benjamin</creatorcontrib><creatorcontrib>Zhou, Tianming</creatorcontrib><creatorcontrib>Do, Minh N</creatorcontrib><creatorcontrib>Ma, Jian</creatorcontrib><title>Rotation equivariant and invariant neural networks for microscopy image analysis</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Neural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microscopy image data is rotation invariance. Here we consider the application of two schemes for encoding rotation equivariance and invariance in a convolutional neural network, namely, the group-equivariant CNN (G-CNN), and a new architecture with simple, efficient conic convolution, for classifying microscopy images. We additionally integrate the 2D-discrete-Fourier transform (2D-DFT) as an effective means for encoding global rotational invariance. We call our new method the Conic Convolution and DFT Network (CFNet). Results We evaluated the efficacy of CFNet and G-CNN as compared to a standard CNN for several different image classification tasks, including simulated and real microscopy images of subcellular protein localization, and demonstrated improved performance. We believe CFNet has the potential to improve many high-throughput microscopy image analysis applications. Availability and implementation Source code of CFNet is available at: https://github.com/bchidest/CFNet. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Ismb/Eccb 2019 Conference Proceedings</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNUdtKwzAYDqK4OX0EpZfe1OXQtOuNIMMTDBTR65DmMKNtsiXtZD69GZ3D3Xn1J_zfKfkAOEfwCsGSjCvjjNXON7w1Ioyr9ptQcgCGKMthiiEtD-OZ5EWaTSAZgJMQPiCkKMuyYzAgiCKY53gInl9cGxWcTdSyMyvuDbdtwq1MjP29WdV5XsfRfjn_GZLomjRGeBeEW6wT0_C5ihRer4MJp-BI8zqos-0cgbe729fpQzp7un-c3sxSQdGkTTkmMpNSF1CojOMMI6011VLDAhcSIwyJrDgqhZKoJLjglVC0hErlpZK44mQErnvdRVc1Sgpl2xiSLXyM49fMccP2N9a8s7lbsTxHeIJJFLjcCni37FRoWWOCUHXNrXJdYBhPSlpEaxyhtIdu3hy80jsbBNmmDbbfBuvbiLyLvxl3rN_vjwDYA1y3-KfmDyCJoU8</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Chidester, Benjamin</creator><creator>Zhou, Tianming</creator><creator>Do, Minh N</creator><creator>Ma, Jian</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190715</creationdate><title>Rotation equivariant and invariant neural networks for microscopy image analysis</title><author>Chidester, Benjamin ; Zhou, Tianming ; Do, Minh N ; Ma, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-a23d4ddf70ce4a2421fff5fdf0727d21203dba19ced19327abce590ee69ed2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ismb/Eccb 2019 Conference Proceedings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chidester, Benjamin</creatorcontrib><creatorcontrib>Zhou, Tianming</creatorcontrib><creatorcontrib>Do, Minh N</creatorcontrib><creatorcontrib>Ma, Jian</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chidester, Benjamin</au><au>Zhou, Tianming</au><au>Do, Minh N</au><au>Ma, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotation equivariant and invariant neural networks for microscopy image analysis</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-07-15</date><risdate>2019</risdate><volume>35</volume><issue>14</issue><spage>i530</spage><epage>i537</epage><pages>i530-i537</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Neural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microscopy image data is rotation invariance. Here we consider the application of two schemes for encoding rotation equivariance and invariance in a convolutional neural network, namely, the group-equivariant CNN (G-CNN), and a new architecture with simple, efficient conic convolution, for classifying microscopy images. We additionally integrate the 2D-discrete-Fourier transform (2D-DFT) as an effective means for encoding global rotational invariance. We call our new method the Conic Convolution and DFT Network (CFNet). Results We evaluated the efficacy of CFNet and G-CNN as compared to a standard CNN for several different image classification tasks, including simulated and real microscopy images of subcellular protein localization, and demonstrated improved performance. We believe CFNet has the potential to improve many high-throughput microscopy image analysis applications. Availability and implementation Source code of CFNet is available at: https://github.com/bchidest/CFNet. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31510662</pmid><doi>10.1093/bioinformatics/btz353</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2019-07, Vol.35 (14), p.i530-i537
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6612823
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection
subjects Ismb/Eccb 2019 Conference Proceedings
title Rotation equivariant and invariant neural networks for microscopy image analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotation%20equivariant%20and%20invariant%20neural%20networks%20for%20microscopy%20image%20analysis&rft.jtitle=Bioinformatics&rft.au=Chidester,%20Benjamin&rft.date=2019-07-15&rft.volume=35&rft.issue=14&rft.spage=i530&rft.epage=i537&rft.pages=i530-i537&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz353&rft_dat=%3Cproquest_pubme%3E2289573272%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289573272&rft_id=info:pmid/31510662&rft_oup_id=10.1093/bioinformatics/btz353&rfr_iscdi=true