Rotation equivariant and invariant neural networks for microscopy image analysis
Abstract Motivation Neural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microsco...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2019-07, Vol.35 (14), p.i530-i537 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | i537 |
---|---|
container_issue | 14 |
container_start_page | i530 |
container_title | Bioinformatics |
container_volume | 35 |
creator | Chidester, Benjamin Zhou, Tianming Do, Minh N Ma, Jian |
description | Abstract
Motivation
Neural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microscopy image data is rotation invariance. Here we consider the application of two schemes for encoding rotation equivariance and invariance in a convolutional neural network, namely, the group-equivariant CNN (G-CNN), and a new architecture with simple, efficient conic convolution, for classifying microscopy images. We additionally integrate the 2D-discrete-Fourier transform (2D-DFT) as an effective means for encoding global rotational invariance. We call our new method the Conic Convolution and DFT Network (CFNet).
Results
We evaluated the efficacy of CFNet and G-CNN as compared to a standard CNN for several different image classification tasks, including simulated and real microscopy images of subcellular protein localization, and demonstrated improved performance. We believe CFNet has the potential to improve many high-throughput microscopy image analysis applications.
Availability and implementation
Source code of CFNet is available at: https://github.com/bchidest/CFNet.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btz353 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6612823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz353</oup_id><sourcerecordid>2289573272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-a23d4ddf70ce4a2421fff5fdf0727d21203dba19ced19327abce590ee69ed2ba3</originalsourceid><addsrcrecordid>eNqNUdtKwzAYDqK4OX0EpZfe1OXQtOuNIMMTDBTR65DmMKNtsiXtZD69GZ3D3Xn1J_zfKfkAOEfwCsGSjCvjjNXON7w1Ioyr9ptQcgCGKMthiiEtD-OZ5EWaTSAZgJMQPiCkKMuyYzAgiCKY53gInl9cGxWcTdSyMyvuDbdtwq1MjP29WdV5XsfRfjn_GZLomjRGeBeEW6wT0_C5ihRer4MJp-BI8zqos-0cgbe729fpQzp7un-c3sxSQdGkTTkmMpNSF1CojOMMI6011VLDAhcSIwyJrDgqhZKoJLjglVC0hErlpZK44mQErnvdRVc1Sgpl2xiSLXyM49fMccP2N9a8s7lbsTxHeIJJFLjcCni37FRoWWOCUHXNrXJdYBhPSlpEaxyhtIdu3hy80jsbBNmmDbbfBuvbiLyLvxl3rN_vjwDYA1y3-KfmDyCJoU8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289573272</pqid></control><display><type>article</type><title>Rotation equivariant and invariant neural networks for microscopy image analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chidester, Benjamin ; Zhou, Tianming ; Do, Minh N ; Ma, Jian</creator><creatorcontrib>Chidester, Benjamin ; Zhou, Tianming ; Do, Minh N ; Ma, Jian</creatorcontrib><description>Abstract
Motivation
Neural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microscopy image data is rotation invariance. Here we consider the application of two schemes for encoding rotation equivariance and invariance in a convolutional neural network, namely, the group-equivariant CNN (G-CNN), and a new architecture with simple, efficient conic convolution, for classifying microscopy images. We additionally integrate the 2D-discrete-Fourier transform (2D-DFT) as an effective means for encoding global rotational invariance. We call our new method the Conic Convolution and DFT Network (CFNet).
Results
We evaluated the efficacy of CFNet and G-CNN as compared to a standard CNN for several different image classification tasks, including simulated and real microscopy images of subcellular protein localization, and demonstrated improved performance. We believe CFNet has the potential to improve many high-throughput microscopy image analysis applications.
Availability and implementation
Source code of CFNet is available at: https://github.com/bchidest/CFNet.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz353</identifier><identifier>PMID: 31510662</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Ismb/Eccb 2019 Conference Proceedings</subject><ispartof>Bioinformatics, 2019-07, Vol.35 (14), p.i530-i537</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-a23d4ddf70ce4a2421fff5fdf0727d21203dba19ced19327abce590ee69ed2ba3</citedby><cites>FETCH-LOGICAL-c518t-a23d4ddf70ce4a2421fff5fdf0727d21203dba19ced19327abce590ee69ed2ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612823/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612823/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31510662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chidester, Benjamin</creatorcontrib><creatorcontrib>Zhou, Tianming</creatorcontrib><creatorcontrib>Do, Minh N</creatorcontrib><creatorcontrib>Ma, Jian</creatorcontrib><title>Rotation equivariant and invariant neural networks for microscopy image analysis</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Neural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microscopy image data is rotation invariance. Here we consider the application of two schemes for encoding rotation equivariance and invariance in a convolutional neural network, namely, the group-equivariant CNN (G-CNN), and a new architecture with simple, efficient conic convolution, for classifying microscopy images. We additionally integrate the 2D-discrete-Fourier transform (2D-DFT) as an effective means for encoding global rotational invariance. We call our new method the Conic Convolution and DFT Network (CFNet).
Results
We evaluated the efficacy of CFNet and G-CNN as compared to a standard CNN for several different image classification tasks, including simulated and real microscopy images of subcellular protein localization, and demonstrated improved performance. We believe CFNet has the potential to improve many high-throughput microscopy image analysis applications.
Availability and implementation
Source code of CFNet is available at: https://github.com/bchidest/CFNet.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Ismb/Eccb 2019 Conference Proceedings</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNUdtKwzAYDqK4OX0EpZfe1OXQtOuNIMMTDBTR65DmMKNtsiXtZD69GZ3D3Xn1J_zfKfkAOEfwCsGSjCvjjNXON7w1Ioyr9ptQcgCGKMthiiEtD-OZ5EWaTSAZgJMQPiCkKMuyYzAgiCKY53gInl9cGxWcTdSyMyvuDbdtwq1MjP29WdV5XsfRfjn_GZLomjRGeBeEW6wT0_C5ihRer4MJp-BI8zqos-0cgbe729fpQzp7un-c3sxSQdGkTTkmMpNSF1CojOMMI6011VLDAhcSIwyJrDgqhZKoJLjglVC0hErlpZK44mQErnvdRVc1Sgpl2xiSLXyM49fMccP2N9a8s7lbsTxHeIJJFLjcCni37FRoWWOCUHXNrXJdYBhPSlpEaxyhtIdu3hy80jsbBNmmDbbfBuvbiLyLvxl3rN_vjwDYA1y3-KfmDyCJoU8</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Chidester, Benjamin</creator><creator>Zhou, Tianming</creator><creator>Do, Minh N</creator><creator>Ma, Jian</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190715</creationdate><title>Rotation equivariant and invariant neural networks for microscopy image analysis</title><author>Chidester, Benjamin ; Zhou, Tianming ; Do, Minh N ; Ma, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-a23d4ddf70ce4a2421fff5fdf0727d21203dba19ced19327abce590ee69ed2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ismb/Eccb 2019 Conference Proceedings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chidester, Benjamin</creatorcontrib><creatorcontrib>Zhou, Tianming</creatorcontrib><creatorcontrib>Do, Minh N</creatorcontrib><creatorcontrib>Ma, Jian</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chidester, Benjamin</au><au>Zhou, Tianming</au><au>Do, Minh N</au><au>Ma, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotation equivariant and invariant neural networks for microscopy image analysis</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-07-15</date><risdate>2019</risdate><volume>35</volume><issue>14</issue><spage>i530</spage><epage>i537</epage><pages>i530-i537</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Neural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microscopy image data is rotation invariance. Here we consider the application of two schemes for encoding rotation equivariance and invariance in a convolutional neural network, namely, the group-equivariant CNN (G-CNN), and a new architecture with simple, efficient conic convolution, for classifying microscopy images. We additionally integrate the 2D-discrete-Fourier transform (2D-DFT) as an effective means for encoding global rotational invariance. We call our new method the Conic Convolution and DFT Network (CFNet).
Results
We evaluated the efficacy of CFNet and G-CNN as compared to a standard CNN for several different image classification tasks, including simulated and real microscopy images of subcellular protein localization, and demonstrated improved performance. We believe CFNet has the potential to improve many high-throughput microscopy image analysis applications.
Availability and implementation
Source code of CFNet is available at: https://github.com/bchidest/CFNet.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31510662</pmid><doi>10.1093/bioinformatics/btz353</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2019-07, Vol.35 (14), p.i530-i537 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6612823 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection |
subjects | Ismb/Eccb 2019 Conference Proceedings |
title | Rotation equivariant and invariant neural networks for microscopy image analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotation%20equivariant%20and%20invariant%20neural%20networks%20for%20microscopy%20image%20analysis&rft.jtitle=Bioinformatics&rft.au=Chidester,%20Benjamin&rft.date=2019-07-15&rft.volume=35&rft.issue=14&rft.spage=i530&rft.epage=i537&rft.pages=i530-i537&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz353&rft_dat=%3Cproquest_pubme%3E2289573272%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289573272&rft_id=info:pmid/31510662&rft_oup_id=10.1093/bioinformatics/btz353&rfr_iscdi=true |