Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension
Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on a...
Gespeichert in:
Veröffentlicht in: | Cell 2019-04, Vol.177 (2), p.299-314.e16 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314.e16 |
---|---|
container_issue | 2 |
container_start_page | 299 |
container_title | Cell |
container_volume | 177 |
creator | Zhou, Ben Kreuzer, Johannes Kumsta, Caroline Wu, Lianfeng Kamer, Kimberli J. Cedillo, Lucydalila Zhang, Yuyao Li, Sainan Kacergis, Michael C. Webster, Christopher M. Fejes-Toth, Geza Naray-Fejes-Toth, Aniko Das, Sudeshna Hansen, Malene Haas, Wilhelm Soukas, Alexander A. |
description | Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.
[Display omitted]
•SGK1 regulates autophagy in both C. elegans and mammalian cells•Elevated autophagy and mPTP opening shorten lifespan in sgk-1/mTORC2 mutant worms•SGK-1 phosphorylates mPTP component VDAC1 on Ser104, promoting its degradation•Loss of SGK function exaggerates mPTP-dependent hepatic ischemia/reperfusion injury
The role of autophagy in lifespan extension depends on modulation of mitochondrial permeability via the action of the kinase SGK1. |
doi_str_mv | 10.1016/j.cell.2019.02.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6610881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009286741930162X</els_id><sourcerecordid>2253206919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-669c1bfdec611d328af9e5dd013eadc2035f5ffeb8f17a6dcf779b362a662c763</originalsourceid><addsrcrecordid>eNqNkUFP3DAQha2Kqmyhf4BDlSOXpLazdmKpQkJoW5CWtgc4W449Zr3K2sF2Vt1_T1ZLEb0gTnOY7z3Nm4fQGcEVwYR_W1ca-r6imIgK0wqT-gOaESyack4aeoRmGAtatryZH6PPKa0xxi1j7BM6rqeFaIWYoV-3Lge9Ct5Ep_riD8QNqM71Lu-Ke6_DOPSQikUPW5XBFJdjDsNKPewK5U2xdBbSoHyx-JvBJxf8KfpoVZ_gy_M8Qfc_FndX1-Xy98-bq8tlqRmb55JzoUlnDWhOiKlpq6wAZswUAZTRFNfMMmuhay1pFDfaNo3oak4V51Q3vD5BFwffYew2YDT4HFUvh-g2Ku5kUE7-v_FuJR_CVnJOcNuSyeD82SCGxxFSlhuX9u9UHsKYJKWsppgLIt6BYtIQ1rL5hNIDqmNIKYJ9uYhgue9MruVeKfedSUzlFHgSfX2d5UXyr6QJ-H4AYPro1kGUSTvwGoyLoLM0wb3l_wTOraqB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201715854</pqid></control><display><type>article</type><title>Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhou, Ben ; Kreuzer, Johannes ; Kumsta, Caroline ; Wu, Lianfeng ; Kamer, Kimberli J. ; Cedillo, Lucydalila ; Zhang, Yuyao ; Li, Sainan ; Kacergis, Michael C. ; Webster, Christopher M. ; Fejes-Toth, Geza ; Naray-Fejes-Toth, Aniko ; Das, Sudeshna ; Hansen, Malene ; Haas, Wilhelm ; Soukas, Alexander A.</creator><creatorcontrib>Zhou, Ben ; Kreuzer, Johannes ; Kumsta, Caroline ; Wu, Lianfeng ; Kamer, Kimberli J. ; Cedillo, Lucydalila ; Zhang, Yuyao ; Li, Sainan ; Kacergis, Michael C. ; Webster, Christopher M. ; Fejes-Toth, Geza ; Naray-Fejes-Toth, Aniko ; Das, Sudeshna ; Hansen, Malene ; Haas, Wilhelm ; Soukas, Alexander A.</creatorcontrib><description>Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.
[Display omitted]
•SGK1 regulates autophagy in both C. elegans and mammalian cells•Elevated autophagy and mPTP opening shorten lifespan in sgk-1/mTORC2 mutant worms•SGK-1 phosphorylates mPTP component VDAC1 on Ser104, promoting its degradation•Loss of SGK function exaggerates mPTP-dependent hepatic ischemia/reperfusion injury
The role of autophagy in lifespan extension depends on modulation of mitochondrial permeability via the action of the kinase SGK1.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2019.02.013</identifier><identifier>PMID: 30929899</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>aging ; Aging - metabolism ; Animals ; autophagy ; Autophagy - physiology ; blood serum ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Caenorhabditis elegans Proteins - physiology ; Caloric Restriction ; death ; germ cells ; HEK293 Cells ; Humans ; ischemia ; ischemia/reperfusion injury ; knockout mutants ; longevity ; Longevity - physiology ; low calorie diet ; Male ; mammals ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Membrane Transport Proteins - physiology ; Mitochondrial Membranes - physiology ; mitochondrial permeability ; mPTP ; mTORC2 ; Permeability ; Primary Cell Culture ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Protein-Serine-Threonine Kinases - physiology ; reperfusion injury ; Reperfusion Injury - metabolism ; SGK ; Signal Transduction ; stem cells</subject><ispartof>Cell, 2019-04, Vol.177 (2), p.299-314.e16</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-669c1bfdec611d328af9e5dd013eadc2035f5ffeb8f17a6dcf779b362a662c763</citedby><cites>FETCH-LOGICAL-c554t-669c1bfdec611d328af9e5dd013eadc2035f5ffeb8f17a6dcf779b362a662c763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009286741930162X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30929899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Ben</creatorcontrib><creatorcontrib>Kreuzer, Johannes</creatorcontrib><creatorcontrib>Kumsta, Caroline</creatorcontrib><creatorcontrib>Wu, Lianfeng</creatorcontrib><creatorcontrib>Kamer, Kimberli J.</creatorcontrib><creatorcontrib>Cedillo, Lucydalila</creatorcontrib><creatorcontrib>Zhang, Yuyao</creatorcontrib><creatorcontrib>Li, Sainan</creatorcontrib><creatorcontrib>Kacergis, Michael C.</creatorcontrib><creatorcontrib>Webster, Christopher M.</creatorcontrib><creatorcontrib>Fejes-Toth, Geza</creatorcontrib><creatorcontrib>Naray-Fejes-Toth, Aniko</creatorcontrib><creatorcontrib>Das, Sudeshna</creatorcontrib><creatorcontrib>Hansen, Malene</creatorcontrib><creatorcontrib>Haas, Wilhelm</creatorcontrib><creatorcontrib>Soukas, Alexander A.</creatorcontrib><title>Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension</title><title>Cell</title><addtitle>Cell</addtitle><description>Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.
[Display omitted]
•SGK1 regulates autophagy in both C. elegans and mammalian cells•Elevated autophagy and mPTP opening shorten lifespan in sgk-1/mTORC2 mutant worms•SGK-1 phosphorylates mPTP component VDAC1 on Ser104, promoting its degradation•Loss of SGK function exaggerates mPTP-dependent hepatic ischemia/reperfusion injury
The role of autophagy in lifespan extension depends on modulation of mitochondrial permeability via the action of the kinase SGK1.</description><subject>aging</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>autophagy</subject><subject>Autophagy - physiology</subject><subject>blood serum</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Caenorhabditis elegans Proteins - physiology</subject><subject>Caloric Restriction</subject><subject>death</subject><subject>germ cells</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>ischemia</subject><subject>ischemia/reperfusion injury</subject><subject>knockout mutants</subject><subject>longevity</subject><subject>Longevity - physiology</subject><subject>low calorie diet</subject><subject>Male</subject><subject>mammals</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - physiology</subject><subject>Mitochondrial Membranes - physiology</subject><subject>mitochondrial permeability</subject><subject>mPTP</subject><subject>mTORC2</subject><subject>Permeability</subject><subject>Primary Cell Culture</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Protein-Serine-Threonine Kinases - physiology</subject><subject>reperfusion injury</subject><subject>Reperfusion Injury - metabolism</subject><subject>SGK</subject><subject>Signal Transduction</subject><subject>stem cells</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFP3DAQha2Kqmyhf4BDlSOXpLazdmKpQkJoW5CWtgc4W449Zr3K2sF2Vt1_T1ZLEb0gTnOY7z3Nm4fQGcEVwYR_W1ca-r6imIgK0wqT-gOaESyack4aeoRmGAtatryZH6PPKa0xxi1j7BM6rqeFaIWYoV-3Lge9Ct5Ep_riD8QNqM71Lu-Ke6_DOPSQikUPW5XBFJdjDsNKPewK5U2xdBbSoHyx-JvBJxf8KfpoVZ_gy_M8Qfc_FndX1-Xy98-bq8tlqRmb55JzoUlnDWhOiKlpq6wAZswUAZTRFNfMMmuhay1pFDfaNo3oak4V51Q3vD5BFwffYew2YDT4HFUvh-g2Ku5kUE7-v_FuJR_CVnJOcNuSyeD82SCGxxFSlhuX9u9UHsKYJKWsppgLIt6BYtIQ1rL5hNIDqmNIKYJ9uYhgue9MruVeKfedSUzlFHgSfX2d5UXyr6QJ-H4AYPro1kGUSTvwGoyLoLM0wb3l_wTOraqB</recordid><startdate>20190404</startdate><enddate>20190404</enddate><creator>Zhou, Ben</creator><creator>Kreuzer, Johannes</creator><creator>Kumsta, Caroline</creator><creator>Wu, Lianfeng</creator><creator>Kamer, Kimberli J.</creator><creator>Cedillo, Lucydalila</creator><creator>Zhang, Yuyao</creator><creator>Li, Sainan</creator><creator>Kacergis, Michael C.</creator><creator>Webster, Christopher M.</creator><creator>Fejes-Toth, Geza</creator><creator>Naray-Fejes-Toth, Aniko</creator><creator>Das, Sudeshna</creator><creator>Hansen, Malene</creator><creator>Haas, Wilhelm</creator><creator>Soukas, Alexander A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190404</creationdate><title>Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension</title><author>Zhou, Ben ; Kreuzer, Johannes ; Kumsta, Caroline ; Wu, Lianfeng ; Kamer, Kimberli J. ; Cedillo, Lucydalila ; Zhang, Yuyao ; Li, Sainan ; Kacergis, Michael C. ; Webster, Christopher M. ; Fejes-Toth, Geza ; Naray-Fejes-Toth, Aniko ; Das, Sudeshna ; Hansen, Malene ; Haas, Wilhelm ; Soukas, Alexander A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-669c1bfdec611d328af9e5dd013eadc2035f5ffeb8f17a6dcf779b362a662c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>aging</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>autophagy</topic><topic>Autophagy - physiology</topic><topic>blood serum</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Caenorhabditis elegans Proteins - physiology</topic><topic>Caloric Restriction</topic><topic>death</topic><topic>germ cells</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>ischemia</topic><topic>ischemia/reperfusion injury</topic><topic>knockout mutants</topic><topic>longevity</topic><topic>Longevity - physiology</topic><topic>low calorie diet</topic><topic>Male</topic><topic>mammals</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - physiology</topic><topic>Mitochondrial Membranes - physiology</topic><topic>mitochondrial permeability</topic><topic>mPTP</topic><topic>mTORC2</topic><topic>Permeability</topic><topic>Primary Cell Culture</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Protein-Serine-Threonine Kinases - physiology</topic><topic>reperfusion injury</topic><topic>Reperfusion Injury - metabolism</topic><topic>SGK</topic><topic>Signal Transduction</topic><topic>stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ben</creatorcontrib><creatorcontrib>Kreuzer, Johannes</creatorcontrib><creatorcontrib>Kumsta, Caroline</creatorcontrib><creatorcontrib>Wu, Lianfeng</creatorcontrib><creatorcontrib>Kamer, Kimberli J.</creatorcontrib><creatorcontrib>Cedillo, Lucydalila</creatorcontrib><creatorcontrib>Zhang, Yuyao</creatorcontrib><creatorcontrib>Li, Sainan</creatorcontrib><creatorcontrib>Kacergis, Michael C.</creatorcontrib><creatorcontrib>Webster, Christopher M.</creatorcontrib><creatorcontrib>Fejes-Toth, Geza</creatorcontrib><creatorcontrib>Naray-Fejes-Toth, Aniko</creatorcontrib><creatorcontrib>Das, Sudeshna</creatorcontrib><creatorcontrib>Hansen, Malene</creatorcontrib><creatorcontrib>Haas, Wilhelm</creatorcontrib><creatorcontrib>Soukas, Alexander A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ben</au><au>Kreuzer, Johannes</au><au>Kumsta, Caroline</au><au>Wu, Lianfeng</au><au>Kamer, Kimberli J.</au><au>Cedillo, Lucydalila</au><au>Zhang, Yuyao</au><au>Li, Sainan</au><au>Kacergis, Michael C.</au><au>Webster, Christopher M.</au><au>Fejes-Toth, Geza</au><au>Naray-Fejes-Toth, Aniko</au><au>Das, Sudeshna</au><au>Hansen, Malene</au><au>Haas, Wilhelm</au><au>Soukas, Alexander A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2019-04-04</date><risdate>2019</risdate><volume>177</volume><issue>2</issue><spage>299</spage><epage>314.e16</epage><pages>299-314.e16</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.
[Display omitted]
•SGK1 regulates autophagy in both C. elegans and mammalian cells•Elevated autophagy and mPTP opening shorten lifespan in sgk-1/mTORC2 mutant worms•SGK-1 phosphorylates mPTP component VDAC1 on Ser104, promoting its degradation•Loss of SGK function exaggerates mPTP-dependent hepatic ischemia/reperfusion injury
The role of autophagy in lifespan extension depends on modulation of mitochondrial permeability via the action of the kinase SGK1.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30929899</pmid><doi>10.1016/j.cell.2019.02.013</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2019-04, Vol.177 (2), p.299-314.e16 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6610881 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | aging Aging - metabolism Animals autophagy Autophagy - physiology blood serum Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism Caenorhabditis elegans Proteins - physiology Caloric Restriction death germ cells HEK293 Cells Humans ischemia ischemia/reperfusion injury knockout mutants longevity Longevity - physiology low calorie diet Male mammals Mice Mice, Knockout Mitochondria Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Membrane Transport Proteins - physiology Mitochondrial Membranes - physiology mitochondrial permeability mPTP mTORC2 Permeability Primary Cell Culture Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Protein-Serine-Threonine Kinases - physiology reperfusion injury Reperfusion Injury - metabolism SGK Signal Transduction stem cells |
title | Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Permeability%20Uncouples%20Elevated%20Autophagy%20and%20Lifespan%20Extension&rft.jtitle=Cell&rft.au=Zhou,%20Ben&rft.date=2019-04-04&rft.volume=177&rft.issue=2&rft.spage=299&rft.epage=314.e16&rft.pages=299-314.e16&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2019.02.013&rft_dat=%3Cproquest_pubme%3E2253206919%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201715854&rft_id=info:pmid/30929899&rft_els_id=S009286741930162X&rfr_iscdi=true |