Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2019-04, Vol.177 (2), p.299-314.e16
Hauptverfasser: Zhou, Ben, Kreuzer, Johannes, Kumsta, Caroline, Wu, Lianfeng, Kamer, Kimberli J., Cedillo, Lucydalila, Zhang, Yuyao, Li, Sainan, Kacergis, Michael C., Webster, Christopher M., Fejes-Toth, Geza, Naray-Fejes-Toth, Aniko, Das, Sudeshna, Hansen, Malene, Haas, Wilhelm, Soukas, Alexander A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314.e16
container_issue 2
container_start_page 299
container_title Cell
container_volume 177
creator Zhou, Ben
Kreuzer, Johannes
Kumsta, Caroline
Wu, Lianfeng
Kamer, Kimberli J.
Cedillo, Lucydalila
Zhang, Yuyao
Li, Sainan
Kacergis, Michael C.
Webster, Christopher M.
Fejes-Toth, Geza
Naray-Fejes-Toth, Aniko
Das, Sudeshna
Hansen, Malene
Haas, Wilhelm
Soukas, Alexander A.
description Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging. [Display omitted] •SGK1 regulates autophagy in both C. elegans and mammalian cells•Elevated autophagy and mPTP opening shorten lifespan in sgk-1/mTORC2 mutant worms•SGK-1 phosphorylates mPTP component VDAC1 on Ser104, promoting its degradation•Loss of SGK function exaggerates mPTP-dependent hepatic ischemia/reperfusion injury The role of autophagy in lifespan extension depends on modulation of mitochondrial permeability via the action of the kinase SGK1.
doi_str_mv 10.1016/j.cell.2019.02.013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6610881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009286741930162X</els_id><sourcerecordid>2253206919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-669c1bfdec611d328af9e5dd013eadc2035f5ffeb8f17a6dcf779b362a662c763</originalsourceid><addsrcrecordid>eNqNkUFP3DAQha2Kqmyhf4BDlSOXpLazdmKpQkJoW5CWtgc4W449Zr3K2sF2Vt1_T1ZLEb0gTnOY7z3Nm4fQGcEVwYR_W1ca-r6imIgK0wqT-gOaESyack4aeoRmGAtatryZH6PPKa0xxi1j7BM6rqeFaIWYoV-3Lge9Ct5Ep_riD8QNqM71Lu-Ke6_DOPSQikUPW5XBFJdjDsNKPewK5U2xdBbSoHyx-JvBJxf8KfpoVZ_gy_M8Qfc_FndX1-Xy98-bq8tlqRmb55JzoUlnDWhOiKlpq6wAZswUAZTRFNfMMmuhay1pFDfaNo3oak4V51Q3vD5BFwffYew2YDT4HFUvh-g2Ku5kUE7-v_FuJR_CVnJOcNuSyeD82SCGxxFSlhuX9u9UHsKYJKWsppgLIt6BYtIQ1rL5hNIDqmNIKYJ9uYhgue9MruVeKfedSUzlFHgSfX2d5UXyr6QJ-H4AYPro1kGUSTvwGoyLoLM0wb3l_wTOraqB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201715854</pqid></control><display><type>article</type><title>Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhou, Ben ; Kreuzer, Johannes ; Kumsta, Caroline ; Wu, Lianfeng ; Kamer, Kimberli J. ; Cedillo, Lucydalila ; Zhang, Yuyao ; Li, Sainan ; Kacergis, Michael C. ; Webster, Christopher M. ; Fejes-Toth, Geza ; Naray-Fejes-Toth, Aniko ; Das, Sudeshna ; Hansen, Malene ; Haas, Wilhelm ; Soukas, Alexander A.</creator><creatorcontrib>Zhou, Ben ; Kreuzer, Johannes ; Kumsta, Caroline ; Wu, Lianfeng ; Kamer, Kimberli J. ; Cedillo, Lucydalila ; Zhang, Yuyao ; Li, Sainan ; Kacergis, Michael C. ; Webster, Christopher M. ; Fejes-Toth, Geza ; Naray-Fejes-Toth, Aniko ; Das, Sudeshna ; Hansen, Malene ; Haas, Wilhelm ; Soukas, Alexander A.</creatorcontrib><description>Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging. [Display omitted] •SGK1 regulates autophagy in both C. elegans and mammalian cells•Elevated autophagy and mPTP opening shorten lifespan in sgk-1/mTORC2 mutant worms•SGK-1 phosphorylates mPTP component VDAC1 on Ser104, promoting its degradation•Loss of SGK function exaggerates mPTP-dependent hepatic ischemia/reperfusion injury The role of autophagy in lifespan extension depends on modulation of mitochondrial permeability via the action of the kinase SGK1.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2019.02.013</identifier><identifier>PMID: 30929899</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>aging ; Aging - metabolism ; Animals ; autophagy ; Autophagy - physiology ; blood serum ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Caenorhabditis elegans Proteins - physiology ; Caloric Restriction ; death ; germ cells ; HEK293 Cells ; Humans ; ischemia ; ischemia/reperfusion injury ; knockout mutants ; longevity ; Longevity - physiology ; low calorie diet ; Male ; mammals ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Membrane Transport Proteins - physiology ; Mitochondrial Membranes - physiology ; mitochondrial permeability ; mPTP ; mTORC2 ; Permeability ; Primary Cell Culture ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Protein-Serine-Threonine Kinases - physiology ; reperfusion injury ; Reperfusion Injury - metabolism ; SGK ; Signal Transduction ; stem cells</subject><ispartof>Cell, 2019-04, Vol.177 (2), p.299-314.e16</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-669c1bfdec611d328af9e5dd013eadc2035f5ffeb8f17a6dcf779b362a662c763</citedby><cites>FETCH-LOGICAL-c554t-669c1bfdec611d328af9e5dd013eadc2035f5ffeb8f17a6dcf779b362a662c763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009286741930162X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30929899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Ben</creatorcontrib><creatorcontrib>Kreuzer, Johannes</creatorcontrib><creatorcontrib>Kumsta, Caroline</creatorcontrib><creatorcontrib>Wu, Lianfeng</creatorcontrib><creatorcontrib>Kamer, Kimberli J.</creatorcontrib><creatorcontrib>Cedillo, Lucydalila</creatorcontrib><creatorcontrib>Zhang, Yuyao</creatorcontrib><creatorcontrib>Li, Sainan</creatorcontrib><creatorcontrib>Kacergis, Michael C.</creatorcontrib><creatorcontrib>Webster, Christopher M.</creatorcontrib><creatorcontrib>Fejes-Toth, Geza</creatorcontrib><creatorcontrib>Naray-Fejes-Toth, Aniko</creatorcontrib><creatorcontrib>Das, Sudeshna</creatorcontrib><creatorcontrib>Hansen, Malene</creatorcontrib><creatorcontrib>Haas, Wilhelm</creatorcontrib><creatorcontrib>Soukas, Alexander A.</creatorcontrib><title>Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension</title><title>Cell</title><addtitle>Cell</addtitle><description>Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging. [Display omitted] •SGK1 regulates autophagy in both C. elegans and mammalian cells•Elevated autophagy and mPTP opening shorten lifespan in sgk-1/mTORC2 mutant worms•SGK-1 phosphorylates mPTP component VDAC1 on Ser104, promoting its degradation•Loss of SGK function exaggerates mPTP-dependent hepatic ischemia/reperfusion injury The role of autophagy in lifespan extension depends on modulation of mitochondrial permeability via the action of the kinase SGK1.</description><subject>aging</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>autophagy</subject><subject>Autophagy - physiology</subject><subject>blood serum</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Caenorhabditis elegans Proteins - physiology</subject><subject>Caloric Restriction</subject><subject>death</subject><subject>germ cells</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>ischemia</subject><subject>ischemia/reperfusion injury</subject><subject>knockout mutants</subject><subject>longevity</subject><subject>Longevity - physiology</subject><subject>low calorie diet</subject><subject>Male</subject><subject>mammals</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - physiology</subject><subject>Mitochondrial Membranes - physiology</subject><subject>mitochondrial permeability</subject><subject>mPTP</subject><subject>mTORC2</subject><subject>Permeability</subject><subject>Primary Cell Culture</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Protein-Serine-Threonine Kinases - physiology</subject><subject>reperfusion injury</subject><subject>Reperfusion Injury - metabolism</subject><subject>SGK</subject><subject>Signal Transduction</subject><subject>stem cells</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFP3DAQha2Kqmyhf4BDlSOXpLazdmKpQkJoW5CWtgc4W449Zr3K2sF2Vt1_T1ZLEb0gTnOY7z3Nm4fQGcEVwYR_W1ca-r6imIgK0wqT-gOaESyack4aeoRmGAtatryZH6PPKa0xxi1j7BM6rqeFaIWYoV-3Lge9Ct5Ep_riD8QNqM71Lu-Ke6_DOPSQikUPW5XBFJdjDsNKPewK5U2xdBbSoHyx-JvBJxf8KfpoVZ_gy_M8Qfc_FndX1-Xy98-bq8tlqRmb55JzoUlnDWhOiKlpq6wAZswUAZTRFNfMMmuhay1pFDfaNo3oak4V51Q3vD5BFwffYew2YDT4HFUvh-g2Ku5kUE7-v_FuJR_CVnJOcNuSyeD82SCGxxFSlhuX9u9UHsKYJKWsppgLIt6BYtIQ1rL5hNIDqmNIKYJ9uYhgue9MruVeKfedSUzlFHgSfX2d5UXyr6QJ-H4AYPro1kGUSTvwGoyLoLM0wb3l_wTOraqB</recordid><startdate>20190404</startdate><enddate>20190404</enddate><creator>Zhou, Ben</creator><creator>Kreuzer, Johannes</creator><creator>Kumsta, Caroline</creator><creator>Wu, Lianfeng</creator><creator>Kamer, Kimberli J.</creator><creator>Cedillo, Lucydalila</creator><creator>Zhang, Yuyao</creator><creator>Li, Sainan</creator><creator>Kacergis, Michael C.</creator><creator>Webster, Christopher M.</creator><creator>Fejes-Toth, Geza</creator><creator>Naray-Fejes-Toth, Aniko</creator><creator>Das, Sudeshna</creator><creator>Hansen, Malene</creator><creator>Haas, Wilhelm</creator><creator>Soukas, Alexander A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190404</creationdate><title>Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension</title><author>Zhou, Ben ; Kreuzer, Johannes ; Kumsta, Caroline ; Wu, Lianfeng ; Kamer, Kimberli J. ; Cedillo, Lucydalila ; Zhang, Yuyao ; Li, Sainan ; Kacergis, Michael C. ; Webster, Christopher M. ; Fejes-Toth, Geza ; Naray-Fejes-Toth, Aniko ; Das, Sudeshna ; Hansen, Malene ; Haas, Wilhelm ; Soukas, Alexander A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-669c1bfdec611d328af9e5dd013eadc2035f5ffeb8f17a6dcf779b362a662c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>aging</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>autophagy</topic><topic>Autophagy - physiology</topic><topic>blood serum</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Caenorhabditis elegans Proteins - physiology</topic><topic>Caloric Restriction</topic><topic>death</topic><topic>germ cells</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>ischemia</topic><topic>ischemia/reperfusion injury</topic><topic>knockout mutants</topic><topic>longevity</topic><topic>Longevity - physiology</topic><topic>low calorie diet</topic><topic>Male</topic><topic>mammals</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - physiology</topic><topic>Mitochondrial Membranes - physiology</topic><topic>mitochondrial permeability</topic><topic>mPTP</topic><topic>mTORC2</topic><topic>Permeability</topic><topic>Primary Cell Culture</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Protein-Serine-Threonine Kinases - physiology</topic><topic>reperfusion injury</topic><topic>Reperfusion Injury - metabolism</topic><topic>SGK</topic><topic>Signal Transduction</topic><topic>stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ben</creatorcontrib><creatorcontrib>Kreuzer, Johannes</creatorcontrib><creatorcontrib>Kumsta, Caroline</creatorcontrib><creatorcontrib>Wu, Lianfeng</creatorcontrib><creatorcontrib>Kamer, Kimberli J.</creatorcontrib><creatorcontrib>Cedillo, Lucydalila</creatorcontrib><creatorcontrib>Zhang, Yuyao</creatorcontrib><creatorcontrib>Li, Sainan</creatorcontrib><creatorcontrib>Kacergis, Michael C.</creatorcontrib><creatorcontrib>Webster, Christopher M.</creatorcontrib><creatorcontrib>Fejes-Toth, Geza</creatorcontrib><creatorcontrib>Naray-Fejes-Toth, Aniko</creatorcontrib><creatorcontrib>Das, Sudeshna</creatorcontrib><creatorcontrib>Hansen, Malene</creatorcontrib><creatorcontrib>Haas, Wilhelm</creatorcontrib><creatorcontrib>Soukas, Alexander A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ben</au><au>Kreuzer, Johannes</au><au>Kumsta, Caroline</au><au>Wu, Lianfeng</au><au>Kamer, Kimberli J.</au><au>Cedillo, Lucydalila</au><au>Zhang, Yuyao</au><au>Li, Sainan</au><au>Kacergis, Michael C.</au><au>Webster, Christopher M.</au><au>Fejes-Toth, Geza</au><au>Naray-Fejes-Toth, Aniko</au><au>Das, Sudeshna</au><au>Hansen, Malene</au><au>Haas, Wilhelm</au><au>Soukas, Alexander A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2019-04-04</date><risdate>2019</risdate><volume>177</volume><issue>2</issue><spage>299</spage><epage>314.e16</epage><pages>299-314.e16</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging. [Display omitted] •SGK1 regulates autophagy in both C. elegans and mammalian cells•Elevated autophagy and mPTP opening shorten lifespan in sgk-1/mTORC2 mutant worms•SGK-1 phosphorylates mPTP component VDAC1 on Ser104, promoting its degradation•Loss of SGK function exaggerates mPTP-dependent hepatic ischemia/reperfusion injury The role of autophagy in lifespan extension depends on modulation of mitochondrial permeability via the action of the kinase SGK1.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30929899</pmid><doi>10.1016/j.cell.2019.02.013</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2019-04, Vol.177 (2), p.299-314.e16
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6610881
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects aging
Aging - metabolism
Animals
autophagy
Autophagy - physiology
blood serum
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Caenorhabditis elegans Proteins - physiology
Caloric Restriction
death
germ cells
HEK293 Cells
Humans
ischemia
ischemia/reperfusion injury
knockout mutants
longevity
Longevity - physiology
low calorie diet
Male
mammals
Mice
Mice, Knockout
Mitochondria
Mitochondrial Membrane Transport Proteins - metabolism
Mitochondrial Membrane Transport Proteins - physiology
Mitochondrial Membranes - physiology
mitochondrial permeability
mPTP
mTORC2
Permeability
Primary Cell Culture
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Protein-Serine-Threonine Kinases - physiology
reperfusion injury
Reperfusion Injury - metabolism
SGK
Signal Transduction
stem cells
title Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Permeability%20Uncouples%20Elevated%20Autophagy%20and%20Lifespan%20Extension&rft.jtitle=Cell&rft.au=Zhou,%20Ben&rft.date=2019-04-04&rft.volume=177&rft.issue=2&rft.spage=299&rft.epage=314.e16&rft.pages=299-314.e16&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2019.02.013&rft_dat=%3Cproquest_pubme%3E2253206919%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201715854&rft_id=info:pmid/30929899&rft_els_id=S009286741930162X&rfr_iscdi=true