Establishing a many-cytokine signature via multivariate anomaly detection
Establishing a cytokine signature associated to some medical condition is an important task in immunology. Increasingly, large numbers of cytokines are used for signatures, via lists of reference ranges for each individual cytokine or ratios of cytokines. Here we argue that this common approach has...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-07, Vol.9 (1), p.9684-13, Article 9684 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 9684 |
container_title | Scientific reports |
container_volume | 9 |
creator | Dingle, K. Zimek, A. Azizieh, F. Ansari, A. R. |
description | Establishing a cytokine signature associated to some medical condition is an important task in immunology. Increasingly, large numbers of cytokines are used for signatures, via lists of reference ranges for each individual cytokine or ratios of cytokines. Here we argue that this common approach has weaknesses, especially when many different cytokines are analysed. Instead, we propose that establishing signatures can be framed as a multivariate anomaly detection problem, and hence exploit the many statistical methods available for this. In this framework, whether or not a given subject’s profile matches the cytokine signature of some condition is determined by whether or not the profile is typical of reference samples of that condition, as judged by an anomaly detection algorithm. We examine previously published cytokine data sets associated to pregnancy complications, brain tumours, and rheumatoid arthritis, as well as normal healthy control samples, and test the performance of a range of anomaly detection algorithms on these data, identifying the best performing methods. Finally, we suggest that this anomaly detection approach could be adopted more widely for general multi-biomarker signatures. |
doi_str_mv | 10.1038/s41598-019-46097-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6609612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253270678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-98f782b0ae1a0dc4696612b2d8fd85e7aec8eafd21f8b04d701708be6bed5b5d3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1ERau2f4ADisSFS4o9iRP7goSq0laqxAXO1iSebF0Su9jOSvvvcdm2FA74YkvvmzeeeYy9FfxM8EZ9TK2QWtVc6LrtuO5r_YodAW9lDQ3A6xfvQ3aa0h0vR4JuhX7DDhsBfQNSHbHri5RxmF26dX5TYbWg39XjLocfzlOV3MZjXiNVW1e0dc5ui9Fhpgp9WHDeVZYyjdkFf8IOJpwTnT7ex-z7l4tv51f1zdfL6_PPN_Uohci1VlOvYOBIArkd2053nYABrJqsktQjjYpwsiAmNfDW9lz0XA3UDWTlIG1zzD7tfe_XYSE7ks8RZ3Mf3YJxZwI687fi3a3ZhK3pyppKq2Lw4dEghp8rpWwWl0aaZ_QU1mQAZAM973pV0Pf_oHdhjb6M90ABdLwssVCwp8YYUoo0PX9GcPMQltmHZUpY5ndYRpeidy_HeC55iqYAzR5IRfIbin96_8f2FwbboXs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252260258</pqid></control><display><type>article</type><title>Establishing a many-cytokine signature via multivariate anomaly detection</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Dingle, K. ; Zimek, A. ; Azizieh, F. ; Ansari, A. R.</creator><creatorcontrib>Dingle, K. ; Zimek, A. ; Azizieh, F. ; Ansari, A. R.</creatorcontrib><description>Establishing a cytokine signature associated to some medical condition is an important task in immunology. Increasingly, large numbers of cytokines are used for signatures, via lists of reference ranges for each individual cytokine or ratios of cytokines. Here we argue that this common approach has weaknesses, especially when many different cytokines are analysed. Instead, we propose that establishing signatures can be framed as a multivariate anomaly detection problem, and hence exploit the many statistical methods available for this. In this framework, whether or not a given subject’s profile matches the cytokine signature of some condition is determined by whether or not the profile is typical of reference samples of that condition, as judged by an anomaly detection algorithm. We examine previously published cytokine data sets associated to pregnancy complications, brain tumours, and rheumatoid arthritis, as well as normal healthy control samples, and test the performance of a range of anomaly detection algorithms on these data, identifying the best performing methods. Finally, we suggest that this anomaly detection approach could be adopted more widely for general multi-biomarker signatures.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-46097-9</identifier><identifier>PMID: 31273258</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/127 ; 639/705/531 ; Algorithms ; Arthritis, Rheumatoid - genetics ; Arthritis, Rheumatoid - metabolism ; Brain cancer ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain tumors ; Cytokines ; Cytokines - genetics ; Cytokines - metabolism ; Datasets as Topic ; Female ; Gene Expression Profiling ; Humanities and Social Sciences ; Humans ; Hypertension - genetics ; Hypertension - metabolism ; Immunology ; Inflammation Mediators - metabolism ; multidisciplinary ; Multivariate Analysis ; Pregnancy ; Pregnancy complications ; Pregnancy Complications - genetics ; Pregnancy Complications - metabolism ; Rheumatoid arthritis ; Science ; Science (multidisciplinary) ; Statistical methods</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.9684-13, Article 9684</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-98f782b0ae1a0dc4696612b2d8fd85e7aec8eafd21f8b04d701708be6bed5b5d3</citedby><cites>FETCH-LOGICAL-c511t-98f782b0ae1a0dc4696612b2d8fd85e7aec8eafd21f8b04d701708be6bed5b5d3</cites><orcidid>0000-0001-7713-4208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609612/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609612/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31273258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dingle, K.</creatorcontrib><creatorcontrib>Zimek, A.</creatorcontrib><creatorcontrib>Azizieh, F.</creatorcontrib><creatorcontrib>Ansari, A. R.</creatorcontrib><title>Establishing a many-cytokine signature via multivariate anomaly detection</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Establishing a cytokine signature associated to some medical condition is an important task in immunology. Increasingly, large numbers of cytokines are used for signatures, via lists of reference ranges for each individual cytokine or ratios of cytokines. Here we argue that this common approach has weaknesses, especially when many different cytokines are analysed. Instead, we propose that establishing signatures can be framed as a multivariate anomaly detection problem, and hence exploit the many statistical methods available for this. In this framework, whether or not a given subject’s profile matches the cytokine signature of some condition is determined by whether or not the profile is typical of reference samples of that condition, as judged by an anomaly detection algorithm. We examine previously published cytokine data sets associated to pregnancy complications, brain tumours, and rheumatoid arthritis, as well as normal healthy control samples, and test the performance of a range of anomaly detection algorithms on these data, identifying the best performing methods. Finally, we suggest that this anomaly detection approach could be adopted more widely for general multi-biomarker signatures.</description><subject>631/250/127</subject><subject>639/705/531</subject><subject>Algorithms</subject><subject>Arthritis, Rheumatoid - genetics</subject><subject>Arthritis, Rheumatoid - metabolism</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain tumors</subject><subject>Cytokines</subject><subject>Cytokines - genetics</subject><subject>Cytokines - metabolism</subject><subject>Datasets as Topic</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypertension - genetics</subject><subject>Hypertension - metabolism</subject><subject>Immunology</subject><subject>Inflammation Mediators - metabolism</subject><subject>multidisciplinary</subject><subject>Multivariate Analysis</subject><subject>Pregnancy</subject><subject>Pregnancy complications</subject><subject>Pregnancy Complications - genetics</subject><subject>Pregnancy Complications - metabolism</subject><subject>Rheumatoid arthritis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Statistical methods</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUFv1DAQhS1ERau2f4ADisSFS4o9iRP7goSq0laqxAXO1iSebF0Su9jOSvvvcdm2FA74YkvvmzeeeYy9FfxM8EZ9TK2QWtVc6LrtuO5r_YodAW9lDQ3A6xfvQ3aa0h0vR4JuhX7DDhsBfQNSHbHri5RxmF26dX5TYbWg39XjLocfzlOV3MZjXiNVW1e0dc5ui9Fhpgp9WHDeVZYyjdkFf8IOJpwTnT7ex-z7l4tv51f1zdfL6_PPN_Uohci1VlOvYOBIArkd2053nYABrJqsktQjjYpwsiAmNfDW9lz0XA3UDWTlIG1zzD7tfe_XYSE7ks8RZ3Mf3YJxZwI687fi3a3ZhK3pyppKq2Lw4dEghp8rpWwWl0aaZ_QU1mQAZAM973pV0Pf_oHdhjb6M90ABdLwssVCwp8YYUoo0PX9GcPMQltmHZUpY5ndYRpeidy_HeC55iqYAzR5IRfIbin96_8f2FwbboXs</recordid><startdate>20190704</startdate><enddate>20190704</enddate><creator>Dingle, K.</creator><creator>Zimek, A.</creator><creator>Azizieh, F.</creator><creator>Ansari, A. R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7713-4208</orcidid></search><sort><creationdate>20190704</creationdate><title>Establishing a many-cytokine signature via multivariate anomaly detection</title><author>Dingle, K. ; Zimek, A. ; Azizieh, F. ; Ansari, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-98f782b0ae1a0dc4696612b2d8fd85e7aec8eafd21f8b04d701708be6bed5b5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/250/127</topic><topic>639/705/531</topic><topic>Algorithms</topic><topic>Arthritis, Rheumatoid - genetics</topic><topic>Arthritis, Rheumatoid - metabolism</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain tumors</topic><topic>Cytokines</topic><topic>Cytokines - genetics</topic><topic>Cytokines - metabolism</topic><topic>Datasets as Topic</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypertension - genetics</topic><topic>Hypertension - metabolism</topic><topic>Immunology</topic><topic>Inflammation Mediators - metabolism</topic><topic>multidisciplinary</topic><topic>Multivariate Analysis</topic><topic>Pregnancy</topic><topic>Pregnancy complications</topic><topic>Pregnancy Complications - genetics</topic><topic>Pregnancy Complications - metabolism</topic><topic>Rheumatoid arthritis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dingle, K.</creatorcontrib><creatorcontrib>Zimek, A.</creatorcontrib><creatorcontrib>Azizieh, F.</creatorcontrib><creatorcontrib>Ansari, A. R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dingle, K.</au><au>Zimek, A.</au><au>Azizieh, F.</au><au>Ansari, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishing a many-cytokine signature via multivariate anomaly detection</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-07-04</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>9684</spage><epage>13</epage><pages>9684-13</pages><artnum>9684</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Establishing a cytokine signature associated to some medical condition is an important task in immunology. Increasingly, large numbers of cytokines are used for signatures, via lists of reference ranges for each individual cytokine or ratios of cytokines. Here we argue that this common approach has weaknesses, especially when many different cytokines are analysed. Instead, we propose that establishing signatures can be framed as a multivariate anomaly detection problem, and hence exploit the many statistical methods available for this. In this framework, whether or not a given subject’s profile matches the cytokine signature of some condition is determined by whether or not the profile is typical of reference samples of that condition, as judged by an anomaly detection algorithm. We examine previously published cytokine data sets associated to pregnancy complications, brain tumours, and rheumatoid arthritis, as well as normal healthy control samples, and test the performance of a range of anomaly detection algorithms on these data, identifying the best performing methods. Finally, we suggest that this anomaly detection approach could be adopted more widely for general multi-biomarker signatures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31273258</pmid><doi>10.1038/s41598-019-46097-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7713-4208</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-07, Vol.9 (1), p.9684-13, Article 9684 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6609612 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/250/127 639/705/531 Algorithms Arthritis, Rheumatoid - genetics Arthritis, Rheumatoid - metabolism Brain cancer Brain Neoplasms - genetics Brain Neoplasms - metabolism Brain tumors Cytokines Cytokines - genetics Cytokines - metabolism Datasets as Topic Female Gene Expression Profiling Humanities and Social Sciences Humans Hypertension - genetics Hypertension - metabolism Immunology Inflammation Mediators - metabolism multidisciplinary Multivariate Analysis Pregnancy Pregnancy complications Pregnancy Complications - genetics Pregnancy Complications - metabolism Rheumatoid arthritis Science Science (multidisciplinary) Statistical methods |
title | Establishing a many-cytokine signature via multivariate anomaly detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishing%20a%20many-cytokine%20signature%20via%20multivariate%20anomaly%20detection&rft.jtitle=Scientific%20reports&rft.au=Dingle,%20K.&rft.date=2019-07-04&rft.volume=9&rft.issue=1&rft.spage=9684&rft.epage=13&rft.pages=9684-13&rft.artnum=9684&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-46097-9&rft_dat=%3Cproquest_pubme%3E2253270678%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252260258&rft_id=info:pmid/31273258&rfr_iscdi=true |