Establishing a many-cytokine signature via multivariate anomaly detection

Establishing a cytokine signature associated to some medical condition is an important task in immunology. Increasingly, large numbers of cytokines are used for signatures, via lists of reference ranges for each individual cytokine or ratios of cytokines. Here we argue that this common approach has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-07, Vol.9 (1), p.9684-13, Article 9684
Hauptverfasser: Dingle, K., Zimek, A., Azizieh, F., Ansari, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 9684
container_title Scientific reports
container_volume 9
creator Dingle, K.
Zimek, A.
Azizieh, F.
Ansari, A. R.
description Establishing a cytokine signature associated to some medical condition is an important task in immunology. Increasingly, large numbers of cytokines are used for signatures, via lists of reference ranges for each individual cytokine or ratios of cytokines. Here we argue that this common approach has weaknesses, especially when many different cytokines are analysed. Instead, we propose that establishing signatures can be framed as a multivariate anomaly detection problem, and hence exploit the many statistical methods available for this. In this framework, whether or not a given subject’s profile matches the cytokine signature of some condition is determined by whether or not the profile is typical of reference samples of that condition, as judged by an anomaly detection algorithm. We examine previously published cytokine data sets associated to pregnancy complications, brain tumours, and rheumatoid arthritis, as well as normal healthy control samples, and test the performance of a range of anomaly detection algorithms on these data, identifying the best performing methods. Finally, we suggest that this anomaly detection approach could be adopted more widely for general multi-biomarker signatures.
doi_str_mv 10.1038/s41598-019-46097-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6609612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253270678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-98f782b0ae1a0dc4696612b2d8fd85e7aec8eafd21f8b04d701708be6bed5b5d3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1ERau2f4ADisSFS4o9iRP7goSq0laqxAXO1iSebF0Su9jOSvvvcdm2FA74YkvvmzeeeYy9FfxM8EZ9TK2QWtVc6LrtuO5r_YodAW9lDQ3A6xfvQ3aa0h0vR4JuhX7DDhsBfQNSHbHri5RxmF26dX5TYbWg39XjLocfzlOV3MZjXiNVW1e0dc5ui9Fhpgp9WHDeVZYyjdkFf8IOJpwTnT7ex-z7l4tv51f1zdfL6_PPN_Uohci1VlOvYOBIArkd2053nYABrJqsktQjjYpwsiAmNfDW9lz0XA3UDWTlIG1zzD7tfe_XYSE7ks8RZ3Mf3YJxZwI687fi3a3ZhK3pyppKq2Lw4dEghp8rpWwWl0aaZ_QU1mQAZAM973pV0Pf_oHdhjb6M90ABdLwssVCwp8YYUoo0PX9GcPMQltmHZUpY5ndYRpeidy_HeC55iqYAzR5IRfIbin96_8f2FwbboXs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252260258</pqid></control><display><type>article</type><title>Establishing a many-cytokine signature via multivariate anomaly detection</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Dingle, K. ; Zimek, A. ; Azizieh, F. ; Ansari, A. R.</creator><creatorcontrib>Dingle, K. ; Zimek, A. ; Azizieh, F. ; Ansari, A. R.</creatorcontrib><description>Establishing a cytokine signature associated to some medical condition is an important task in immunology. Increasingly, large numbers of cytokines are used for signatures, via lists of reference ranges for each individual cytokine or ratios of cytokines. Here we argue that this common approach has weaknesses, especially when many different cytokines are analysed. Instead, we propose that establishing signatures can be framed as a multivariate anomaly detection problem, and hence exploit the many statistical methods available for this. In this framework, whether or not a given subject’s profile matches the cytokine signature of some condition is determined by whether or not the profile is typical of reference samples of that condition, as judged by an anomaly detection algorithm. We examine previously published cytokine data sets associated to pregnancy complications, brain tumours, and rheumatoid arthritis, as well as normal healthy control samples, and test the performance of a range of anomaly detection algorithms on these data, identifying the best performing methods. Finally, we suggest that this anomaly detection approach could be adopted more widely for general multi-biomarker signatures.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-46097-9</identifier><identifier>PMID: 31273258</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/127 ; 639/705/531 ; Algorithms ; Arthritis, Rheumatoid - genetics ; Arthritis, Rheumatoid - metabolism ; Brain cancer ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain tumors ; Cytokines ; Cytokines - genetics ; Cytokines - metabolism ; Datasets as Topic ; Female ; Gene Expression Profiling ; Humanities and Social Sciences ; Humans ; Hypertension - genetics ; Hypertension - metabolism ; Immunology ; Inflammation Mediators - metabolism ; multidisciplinary ; Multivariate Analysis ; Pregnancy ; Pregnancy complications ; Pregnancy Complications - genetics ; Pregnancy Complications - metabolism ; Rheumatoid arthritis ; Science ; Science (multidisciplinary) ; Statistical methods</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.9684-13, Article 9684</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-98f782b0ae1a0dc4696612b2d8fd85e7aec8eafd21f8b04d701708be6bed5b5d3</citedby><cites>FETCH-LOGICAL-c511t-98f782b0ae1a0dc4696612b2d8fd85e7aec8eafd21f8b04d701708be6bed5b5d3</cites><orcidid>0000-0001-7713-4208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609612/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609612/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31273258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dingle, K.</creatorcontrib><creatorcontrib>Zimek, A.</creatorcontrib><creatorcontrib>Azizieh, F.</creatorcontrib><creatorcontrib>Ansari, A. R.</creatorcontrib><title>Establishing a many-cytokine signature via multivariate anomaly detection</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Establishing a cytokine signature associated to some medical condition is an important task in immunology. Increasingly, large numbers of cytokines are used for signatures, via lists of reference ranges for each individual cytokine or ratios of cytokines. Here we argue that this common approach has weaknesses, especially when many different cytokines are analysed. Instead, we propose that establishing signatures can be framed as a multivariate anomaly detection problem, and hence exploit the many statistical methods available for this. In this framework, whether or not a given subject’s profile matches the cytokine signature of some condition is determined by whether or not the profile is typical of reference samples of that condition, as judged by an anomaly detection algorithm. We examine previously published cytokine data sets associated to pregnancy complications, brain tumours, and rheumatoid arthritis, as well as normal healthy control samples, and test the performance of a range of anomaly detection algorithms on these data, identifying the best performing methods. Finally, we suggest that this anomaly detection approach could be adopted more widely for general multi-biomarker signatures.</description><subject>631/250/127</subject><subject>639/705/531</subject><subject>Algorithms</subject><subject>Arthritis, Rheumatoid - genetics</subject><subject>Arthritis, Rheumatoid - metabolism</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain tumors</subject><subject>Cytokines</subject><subject>Cytokines - genetics</subject><subject>Cytokines - metabolism</subject><subject>Datasets as Topic</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypertension - genetics</subject><subject>Hypertension - metabolism</subject><subject>Immunology</subject><subject>Inflammation Mediators - metabolism</subject><subject>multidisciplinary</subject><subject>Multivariate Analysis</subject><subject>Pregnancy</subject><subject>Pregnancy complications</subject><subject>Pregnancy Complications - genetics</subject><subject>Pregnancy Complications - metabolism</subject><subject>Rheumatoid arthritis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Statistical methods</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUFv1DAQhS1ERau2f4ADisSFS4o9iRP7goSq0laqxAXO1iSebF0Su9jOSvvvcdm2FA74YkvvmzeeeYy9FfxM8EZ9TK2QWtVc6LrtuO5r_YodAW9lDQ3A6xfvQ3aa0h0vR4JuhX7DDhsBfQNSHbHri5RxmF26dX5TYbWg39XjLocfzlOV3MZjXiNVW1e0dc5ui9Fhpgp9WHDeVZYyjdkFf8IOJpwTnT7ex-z7l4tv51f1zdfL6_PPN_Uohci1VlOvYOBIArkd2053nYABrJqsktQjjYpwsiAmNfDW9lz0XA3UDWTlIG1zzD7tfe_XYSE7ks8RZ3Mf3YJxZwI687fi3a3ZhK3pyppKq2Lw4dEghp8rpWwWl0aaZ_QU1mQAZAM973pV0Pf_oHdhjb6M90ABdLwssVCwp8YYUoo0PX9GcPMQltmHZUpY5ndYRpeidy_HeC55iqYAzR5IRfIbin96_8f2FwbboXs</recordid><startdate>20190704</startdate><enddate>20190704</enddate><creator>Dingle, K.</creator><creator>Zimek, A.</creator><creator>Azizieh, F.</creator><creator>Ansari, A. R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7713-4208</orcidid></search><sort><creationdate>20190704</creationdate><title>Establishing a many-cytokine signature via multivariate anomaly detection</title><author>Dingle, K. ; Zimek, A. ; Azizieh, F. ; Ansari, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-98f782b0ae1a0dc4696612b2d8fd85e7aec8eafd21f8b04d701708be6bed5b5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/250/127</topic><topic>639/705/531</topic><topic>Algorithms</topic><topic>Arthritis, Rheumatoid - genetics</topic><topic>Arthritis, Rheumatoid - metabolism</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain tumors</topic><topic>Cytokines</topic><topic>Cytokines - genetics</topic><topic>Cytokines - metabolism</topic><topic>Datasets as Topic</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypertension - genetics</topic><topic>Hypertension - metabolism</topic><topic>Immunology</topic><topic>Inflammation Mediators - metabolism</topic><topic>multidisciplinary</topic><topic>Multivariate Analysis</topic><topic>Pregnancy</topic><topic>Pregnancy complications</topic><topic>Pregnancy Complications - genetics</topic><topic>Pregnancy Complications - metabolism</topic><topic>Rheumatoid arthritis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dingle, K.</creatorcontrib><creatorcontrib>Zimek, A.</creatorcontrib><creatorcontrib>Azizieh, F.</creatorcontrib><creatorcontrib>Ansari, A. R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dingle, K.</au><au>Zimek, A.</au><au>Azizieh, F.</au><au>Ansari, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishing a many-cytokine signature via multivariate anomaly detection</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-07-04</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>9684</spage><epage>13</epage><pages>9684-13</pages><artnum>9684</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Establishing a cytokine signature associated to some medical condition is an important task in immunology. Increasingly, large numbers of cytokines are used for signatures, via lists of reference ranges for each individual cytokine or ratios of cytokines. Here we argue that this common approach has weaknesses, especially when many different cytokines are analysed. Instead, we propose that establishing signatures can be framed as a multivariate anomaly detection problem, and hence exploit the many statistical methods available for this. In this framework, whether or not a given subject’s profile matches the cytokine signature of some condition is determined by whether or not the profile is typical of reference samples of that condition, as judged by an anomaly detection algorithm. We examine previously published cytokine data sets associated to pregnancy complications, brain tumours, and rheumatoid arthritis, as well as normal healthy control samples, and test the performance of a range of anomaly detection algorithms on these data, identifying the best performing methods. Finally, we suggest that this anomaly detection approach could be adopted more widely for general multi-biomarker signatures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31273258</pmid><doi>10.1038/s41598-019-46097-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7713-4208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-07, Vol.9 (1), p.9684-13, Article 9684
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6609612
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 631/250/127
639/705/531
Algorithms
Arthritis, Rheumatoid - genetics
Arthritis, Rheumatoid - metabolism
Brain cancer
Brain Neoplasms - genetics
Brain Neoplasms - metabolism
Brain tumors
Cytokines
Cytokines - genetics
Cytokines - metabolism
Datasets as Topic
Female
Gene Expression Profiling
Humanities and Social Sciences
Humans
Hypertension - genetics
Hypertension - metabolism
Immunology
Inflammation Mediators - metabolism
multidisciplinary
Multivariate Analysis
Pregnancy
Pregnancy complications
Pregnancy Complications - genetics
Pregnancy Complications - metabolism
Rheumatoid arthritis
Science
Science (multidisciplinary)
Statistical methods
title Establishing a many-cytokine signature via multivariate anomaly detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishing%20a%20many-cytokine%20signature%20via%20multivariate%20anomaly%20detection&rft.jtitle=Scientific%20reports&rft.au=Dingle,%20K.&rft.date=2019-07-04&rft.volume=9&rft.issue=1&rft.spage=9684&rft.epage=13&rft.pages=9684-13&rft.artnum=9684&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-46097-9&rft_dat=%3Cproquest_pubme%3E2253270678%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252260258&rft_id=info:pmid/31273258&rfr_iscdi=true