GluN3A promotes dendritic spine pruning and destabilization during postnatal development

Synaptic rearrangements during critical periods of postnatal brain development rely on the correct formation, strengthening, and elimination of synapses and associated dendritic spines to form functional networks. The correct balance of these processes is thought to be regulated by synapse-specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2014-07, Vol.34 (28), p.9213-9221
Hauptverfasser: Kehoe, Laura A, Bellone, Camilla, De Roo, Mathias, Zandueta, Aitor, Dey, Partha Narayan, Pérez-Otaño, Isabel, Muller, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9221
container_issue 28
container_start_page 9213
container_title The Journal of neuroscience
container_volume 34
creator Kehoe, Laura A
Bellone, Camilla
De Roo, Mathias
Zandueta, Aitor
Dey, Partha Narayan
Pérez-Otaño, Isabel
Muller, Dominique
description Synaptic rearrangements during critical periods of postnatal brain development rely on the correct formation, strengthening, and elimination of synapses and associated dendritic spines to form functional networks. The correct balance of these processes is thought to be regulated by synapse-specific changes in the subunit composition of NMDA-type glutamate receptors (NMDARs). Among these, the nonconventional NMDAR subunit GluN3A has been suggested to play a role as a molecular brake in synaptic maturation. We tested here this hypothesis using confocal time-lapse imaging in rat hippocampal organotypic slices and assessed the role of GluN3A-containing NMDARs on spine dynamics. We found that overexpressing GluN3A reduced spine density over time, increased spine elimination, and decreased spine stability. The effect of GluN3A overexpression could be further enhanced by using an endocytosis-deficient GluN3A mutant and reproduced by silencing the adaptor protein PACSIN1, which prevents the endocytosis of endogenous GluN3A. Conversely, silencing of GluN3A reduced spine elimination and favored spine stability. Moreover, reexpression of GluN3A in more mature tissue reinstated an increased spine pruning and a low spine stability. Mechanistically, the decreased stability in GluN3A overexpressing neurons could be linked to a failure of plasticity-inducing protocols to selectively stabilize spines and was dependent on the ability of GluN3A to bind the postsynaptic scaffold GIT1. Together, these data provide strong evidence that GluN3A prevents the activity-dependent stabilization of synapses thereby promoting spine pruning, and suggest that GluN3A expression operates as a molecular signal for controlling the extent and timing of synapse maturation.
doi_str_mv 10.1523/JNEUROSCI.5183-13.2014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6608362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1544737331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-a69d845d675053ea2da7dddc35d4ce2ac70fad66a47c2200bfa781f16dc5e903</originalsourceid><addsrcrecordid>eNqFkUtP3DAUha0KVAbav4CyZJPh-p1skNCIV4VAaqnUneWxHTBK7GAnSPDr8Qg6ales7uI799xzdRA6xLDEnNDjHzdnv3_e_lpdLTluaI3pkgBmX9Ci0LYmDPAOWgCRUAsm2R7az_kRACRg-RXtEQ7QEs4X6M9FP9_Q02pMcYiTy5V1wSY_eVPl0QdXwBx8uK90sIXlSa9971_15GOo7Jw2aIx5CnrSfRE8uz6OgwvTN7Tb6T677x_zAN2dn92tLuvr24ur1el1bUqGqdaitQ3jVkgOnDpNrJbWWkO5ZcYRbSR02gqhmTSEAKw7LRvcYWENdy3QA3TybjvO68FZUy4n3asx-UGnFxW1V_-T4B_UfXxWQkBDBSkGRx8GKT7N5UE1-Gxc3-vg4pwVlpI2jLYl3adSzpikklJcpOJdalLMOblumwiD2hSotgWqTYEKU7UpsCwe_vvPdu1vY_QNALOa0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544737331</pqid></control><display><type>article</type><title>GluN3A promotes dendritic spine pruning and destabilization during postnatal development</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kehoe, Laura A ; Bellone, Camilla ; De Roo, Mathias ; Zandueta, Aitor ; Dey, Partha Narayan ; Pérez-Otaño, Isabel ; Muller, Dominique</creator><creatorcontrib>Kehoe, Laura A ; Bellone, Camilla ; De Roo, Mathias ; Zandueta, Aitor ; Dey, Partha Narayan ; Pérez-Otaño, Isabel ; Muller, Dominique</creatorcontrib><description>Synaptic rearrangements during critical periods of postnatal brain development rely on the correct formation, strengthening, and elimination of synapses and associated dendritic spines to form functional networks. The correct balance of these processes is thought to be regulated by synapse-specific changes in the subunit composition of NMDA-type glutamate receptors (NMDARs). Among these, the nonconventional NMDAR subunit GluN3A has been suggested to play a role as a molecular brake in synaptic maturation. We tested here this hypothesis using confocal time-lapse imaging in rat hippocampal organotypic slices and assessed the role of GluN3A-containing NMDARs on spine dynamics. We found that overexpressing GluN3A reduced spine density over time, increased spine elimination, and decreased spine stability. The effect of GluN3A overexpression could be further enhanced by using an endocytosis-deficient GluN3A mutant and reproduced by silencing the adaptor protein PACSIN1, which prevents the endocytosis of endogenous GluN3A. Conversely, silencing of GluN3A reduced spine elimination and favored spine stability. Moreover, reexpression of GluN3A in more mature tissue reinstated an increased spine pruning and a low spine stability. Mechanistically, the decreased stability in GluN3A overexpressing neurons could be linked to a failure of plasticity-inducing protocols to selectively stabilize spines and was dependent on the ability of GluN3A to bind the postsynaptic scaffold GIT1. Together, these data provide strong evidence that GluN3A prevents the activity-dependent stabilization of synapses thereby promoting spine pruning, and suggest that GluN3A expression operates as a molecular signal for controlling the extent and timing of synapse maturation.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.5183-13.2014</identifier><identifier>PMID: 25009255</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action Potentials - physiology ; Aging - pathology ; Aging - physiology ; Animals ; Animals, Newborn ; Cells, Cultured ; Dendritic Spines - physiology ; Dendritic Spines - ultrastructure ; Female ; Hippocampus - physiology ; Hippocampus - ultrastructure ; Male ; Membrane Glycoproteins - metabolism ; Neuronal Plasticity - physiology ; Rats ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 2014-07, Vol.34 (28), p.9213-9221</ispartof><rights>Copyright © 2014 the authors 0270-6474/14/349213-09$15.00/0.</rights><rights>Copyright © 2014 the authors 0270-6474/14/349213-09$15.00/0 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-a69d845d675053ea2da7dddc35d4ce2ac70fad66a47c2200bfa781f16dc5e903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608362/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608362/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25009255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kehoe, Laura A</creatorcontrib><creatorcontrib>Bellone, Camilla</creatorcontrib><creatorcontrib>De Roo, Mathias</creatorcontrib><creatorcontrib>Zandueta, Aitor</creatorcontrib><creatorcontrib>Dey, Partha Narayan</creatorcontrib><creatorcontrib>Pérez-Otaño, Isabel</creatorcontrib><creatorcontrib>Muller, Dominique</creatorcontrib><title>GluN3A promotes dendritic spine pruning and destabilization during postnatal development</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Synaptic rearrangements during critical periods of postnatal brain development rely on the correct formation, strengthening, and elimination of synapses and associated dendritic spines to form functional networks. The correct balance of these processes is thought to be regulated by synapse-specific changes in the subunit composition of NMDA-type glutamate receptors (NMDARs). Among these, the nonconventional NMDAR subunit GluN3A has been suggested to play a role as a molecular brake in synaptic maturation. We tested here this hypothesis using confocal time-lapse imaging in rat hippocampal organotypic slices and assessed the role of GluN3A-containing NMDARs on spine dynamics. We found that overexpressing GluN3A reduced spine density over time, increased spine elimination, and decreased spine stability. The effect of GluN3A overexpression could be further enhanced by using an endocytosis-deficient GluN3A mutant and reproduced by silencing the adaptor protein PACSIN1, which prevents the endocytosis of endogenous GluN3A. Conversely, silencing of GluN3A reduced spine elimination and favored spine stability. Moreover, reexpression of GluN3A in more mature tissue reinstated an increased spine pruning and a low spine stability. Mechanistically, the decreased stability in GluN3A overexpressing neurons could be linked to a failure of plasticity-inducing protocols to selectively stabilize spines and was dependent on the ability of GluN3A to bind the postsynaptic scaffold GIT1. Together, these data provide strong evidence that GluN3A prevents the activity-dependent stabilization of synapses thereby promoting spine pruning, and suggest that GluN3A expression operates as a molecular signal for controlling the extent and timing of synapse maturation.</description><subject>Action Potentials - physiology</subject><subject>Aging - pathology</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Cells, Cultured</subject><subject>Dendritic Spines - physiology</subject><subject>Dendritic Spines - ultrastructure</subject><subject>Female</subject><subject>Hippocampus - physiology</subject><subject>Hippocampus - ultrastructure</subject><subject>Male</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Neuronal Plasticity - physiology</subject><subject>Rats</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtP3DAUha0KVAbav4CyZJPh-p1skNCIV4VAaqnUneWxHTBK7GAnSPDr8Qg6ales7uI799xzdRA6xLDEnNDjHzdnv3_e_lpdLTluaI3pkgBmX9Ci0LYmDPAOWgCRUAsm2R7az_kRACRg-RXtEQ7QEs4X6M9FP9_Q02pMcYiTy5V1wSY_eVPl0QdXwBx8uK90sIXlSa9971_15GOo7Jw2aIx5CnrSfRE8uz6OgwvTN7Tb6T677x_zAN2dn92tLuvr24ur1el1bUqGqdaitQ3jVkgOnDpNrJbWWkO5ZcYRbSR02gqhmTSEAKw7LRvcYWENdy3QA3TybjvO68FZUy4n3asx-UGnFxW1V_-T4B_UfXxWQkBDBSkGRx8GKT7N5UE1-Gxc3-vg4pwVlpI2jLYl3adSzpikklJcpOJdalLMOblumwiD2hSotgWqTYEKU7UpsCwe_vvPdu1vY_QNALOa0g</recordid><startdate>20140709</startdate><enddate>20140709</enddate><creator>Kehoe, Laura A</creator><creator>Bellone, Camilla</creator><creator>De Roo, Mathias</creator><creator>Zandueta, Aitor</creator><creator>Dey, Partha Narayan</creator><creator>Pérez-Otaño, Isabel</creator><creator>Muller, Dominique</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20140709</creationdate><title>GluN3A promotes dendritic spine pruning and destabilization during postnatal development</title><author>Kehoe, Laura A ; Bellone, Camilla ; De Roo, Mathias ; Zandueta, Aitor ; Dey, Partha Narayan ; Pérez-Otaño, Isabel ; Muller, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-a69d845d675053ea2da7dddc35d4ce2ac70fad66a47c2200bfa781f16dc5e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Aging - pathology</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Cells, Cultured</topic><topic>Dendritic Spines - physiology</topic><topic>Dendritic Spines - ultrastructure</topic><topic>Female</topic><topic>Hippocampus - physiology</topic><topic>Hippocampus - ultrastructure</topic><topic>Male</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Neuronal Plasticity - physiology</topic><topic>Rats</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kehoe, Laura A</creatorcontrib><creatorcontrib>Bellone, Camilla</creatorcontrib><creatorcontrib>De Roo, Mathias</creatorcontrib><creatorcontrib>Zandueta, Aitor</creatorcontrib><creatorcontrib>Dey, Partha Narayan</creatorcontrib><creatorcontrib>Pérez-Otaño, Isabel</creatorcontrib><creatorcontrib>Muller, Dominique</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kehoe, Laura A</au><au>Bellone, Camilla</au><au>De Roo, Mathias</au><au>Zandueta, Aitor</au><au>Dey, Partha Narayan</au><au>Pérez-Otaño, Isabel</au><au>Muller, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GluN3A promotes dendritic spine pruning and destabilization during postnatal development</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2014-07-09</date><risdate>2014</risdate><volume>34</volume><issue>28</issue><spage>9213</spage><epage>9221</epage><pages>9213-9221</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Synaptic rearrangements during critical periods of postnatal brain development rely on the correct formation, strengthening, and elimination of synapses and associated dendritic spines to form functional networks. The correct balance of these processes is thought to be regulated by synapse-specific changes in the subunit composition of NMDA-type glutamate receptors (NMDARs). Among these, the nonconventional NMDAR subunit GluN3A has been suggested to play a role as a molecular brake in synaptic maturation. We tested here this hypothesis using confocal time-lapse imaging in rat hippocampal organotypic slices and assessed the role of GluN3A-containing NMDARs on spine dynamics. We found that overexpressing GluN3A reduced spine density over time, increased spine elimination, and decreased spine stability. The effect of GluN3A overexpression could be further enhanced by using an endocytosis-deficient GluN3A mutant and reproduced by silencing the adaptor protein PACSIN1, which prevents the endocytosis of endogenous GluN3A. Conversely, silencing of GluN3A reduced spine elimination and favored spine stability. Moreover, reexpression of GluN3A in more mature tissue reinstated an increased spine pruning and a low spine stability. Mechanistically, the decreased stability in GluN3A overexpressing neurons could be linked to a failure of plasticity-inducing protocols to selectively stabilize spines and was dependent on the ability of GluN3A to bind the postsynaptic scaffold GIT1. Together, these data provide strong evidence that GluN3A prevents the activity-dependent stabilization of synapses thereby promoting spine pruning, and suggest that GluN3A expression operates as a molecular signal for controlling the extent and timing of synapse maturation.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>25009255</pmid><doi>10.1523/JNEUROSCI.5183-13.2014</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2014-07, Vol.34 (28), p.9213-9221
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6608362
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Action Potentials - physiology
Aging - pathology
Aging - physiology
Animals
Animals, Newborn
Cells, Cultured
Dendritic Spines - physiology
Dendritic Spines - ultrastructure
Female
Hippocampus - physiology
Hippocampus - ultrastructure
Male
Membrane Glycoproteins - metabolism
Neuronal Plasticity - physiology
Rats
Synaptic Transmission - physiology
title GluN3A promotes dendritic spine pruning and destabilization during postnatal development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GluN3A%20promotes%20dendritic%20spine%20pruning%20and%20destabilization%20during%20postnatal%20development&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Kehoe,%20Laura%20A&rft.date=2014-07-09&rft.volume=34&rft.issue=28&rft.spage=9213&rft.epage=9221&rft.pages=9213-9221&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.5183-13.2014&rft_dat=%3Cproquest_pubme%3E1544737331%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1544737331&rft_id=info:pmid/25009255&rfr_iscdi=true