Functional characterization of SMN evolution in mouse models of SMA
Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesi...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-07, Vol.9 (1), p.9472-12, Article 9472 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 9472 |
container_title | Scientific reports |
container_volume | 9 |
creator | Osman, Erkan Y. Bolding, Madeline R. Villalón, Eric Kaifer, Kevin A. Lorson, Zachary C. Tisdale, Sarah Hao, Yue Conant, Gavin C. Pires, J. Chris Pellizzoni, Livio Lorson, Christian L. |
description | Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all,
SMN
homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains. Using AAV9 to deliver Smn homologs to SMA mice, we identified a conservation threshold that marks the boundary at which homologs can rescue the SMA phenotype. Smn from
Danio rerio
and
Xenopus laevis
significantly prevent disease, whereas Smn from
Drosophila melanogaster
,
Caenorhabditis elegans
, and
Schizosaccharomyces pombe
was significantly less efficacious. This phenotypic rescue correlated with correction of RNA processing defects induced by SMN deficiency and neuromuscular junction pathology. Based upon the sequence conservation in the rescuing homologs, a minimal
SMN
construct was designed consisting of exons 2, 3, and 6, which showed a partial rescue of the SMA phenotype. While a significant extension in survival was observed, the absence of a complete rescue suggests that while the core conserved region is essential, additional sequences contribute to the overall ability of the SMN protein to rescue disease pathology. |
doi_str_mv | 10.1038/s41598-019-45822-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6603021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251124020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1bf02f131c80c37124ecf53d166c57b823f5e806f6deb99d0f90bad4831597823</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EAgT9ARYoEhs2gfErcTZIqOIlFVgAa8tx7JIqjYudVIKvxzRQHgu8sK2ZM9czvggdYDjBQMVpYJgXIgVcpIwLQlKxgXYJMJ4SSsjmj_sOGoUwg7g4KRguttEOxSSjOIddNL7sW93VrlVNop-VV7ozvn5TH6HE2eTh9i4xS9f0q0DdJnPXBxP3yjRhAM730ZZVTTCjz3MPPV1ePI6v08n91c34fJJqlrMuxaUFYjHFWoCmOSbMaMtphbNM87wUhFpuBGQ2q0xZFBXYAkpVMUHjpHlM76GzQXfRl3NTadN2XjVy4eu58q_SqVr-zrT1s5y6pcwyoEBwFDj-FPDupTehk_M6aNM0qjVxLEkIx7EtIBDRoz_ozPU-_tKKAp7nBWWRIgOlvQvBG7tuBoP8sEkONslok1zZJEUsOvw5xrrky5QI0AEIMdVOjf9--x_Zd-zUnHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250577934</pqid></control><display><type>article</type><title>Functional characterization of SMN evolution in mouse models of SMA</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Osman, Erkan Y. ; Bolding, Madeline R. ; Villalón, Eric ; Kaifer, Kevin A. ; Lorson, Zachary C. ; Tisdale, Sarah ; Hao, Yue ; Conant, Gavin C. ; Pires, J. Chris ; Pellizzoni, Livio ; Lorson, Christian L.</creator><creatorcontrib>Osman, Erkan Y. ; Bolding, Madeline R. ; Villalón, Eric ; Kaifer, Kevin A. ; Lorson, Zachary C. ; Tisdale, Sarah ; Hao, Yue ; Conant, Gavin C. ; Pires, J. Chris ; Pellizzoni, Livio ; Lorson, Christian L.</creatorcontrib><description>Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all,
SMN
homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains. Using AAV9 to deliver Smn homologs to SMA mice, we identified a conservation threshold that marks the boundary at which homologs can rescue the SMA phenotype. Smn from
Danio rerio
and
Xenopus laevis
significantly prevent disease, whereas Smn from
Drosophila melanogaster
,
Caenorhabditis elegans
, and
Schizosaccharomyces pombe
was significantly less efficacious. This phenotypic rescue correlated with correction of RNA processing defects induced by SMN deficiency and neuromuscular junction pathology. Based upon the sequence conservation in the rescuing homologs, a minimal
SMN
construct was designed consisting of exons 2, 3, and 6, which showed a partial rescue of the SMA phenotype. While a significant extension in survival was observed, the absence of a complete rescue suggests that while the core conserved region is essential, additional sequences contribute to the overall ability of the SMN protein to rescue disease pathology.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-45822-8</identifier><identifier>PMID: 31263170</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/63 ; 42/44 ; 631/378/1689/364 ; 631/378/340 ; 64/60 ; Animal models ; Animals ; Caenorhabditis elegans ; Conserved sequence ; Disease Models, Animal ; Drosophila melanogaster ; Evolution, Molecular ; Exons ; Genotype & phenotype ; Humanities and Social Sciences ; Mice ; Mice, Knockout ; multidisciplinary ; Muscular Atrophy, Spinal - genetics ; Muscular Atrophy, Spinal - metabolism ; Neurodegenerative diseases ; Neuromuscular diseases ; Pathology ; Phenotypes ; RNA processing ; Schizosaccharomyces ; Science ; Science (multidisciplinary) ; SMN protein ; Spinal muscular atrophy ; Survival of Motor Neuron 1 Protein - genetics ; Survival of Motor Neuron 1 Protein - metabolism ; Xenopus laevis ; Xenopus Proteins - genetics ; Xenopus Proteins - metabolism ; Zebrafish ; Zebrafish - genetics ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.9472-12, Article 9472</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1bf02f131c80c37124ecf53d166c57b823f5e806f6deb99d0f90bad4831597823</citedby><cites>FETCH-LOGICAL-c474t-1bf02f131c80c37124ecf53d166c57b823f5e806f6deb99d0f90bad4831597823</cites><orcidid>0000-0002-5065-8906 ; 0000-0001-9682-2639 ; 0000-0002-1023-2169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603021/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603021/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31263170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osman, Erkan Y.</creatorcontrib><creatorcontrib>Bolding, Madeline R.</creatorcontrib><creatorcontrib>Villalón, Eric</creatorcontrib><creatorcontrib>Kaifer, Kevin A.</creatorcontrib><creatorcontrib>Lorson, Zachary C.</creatorcontrib><creatorcontrib>Tisdale, Sarah</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><creatorcontrib>Conant, Gavin C.</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Pellizzoni, Livio</creatorcontrib><creatorcontrib>Lorson, Christian L.</creatorcontrib><title>Functional characterization of SMN evolution in mouse models of SMA</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all,
SMN
homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains. Using AAV9 to deliver Smn homologs to SMA mice, we identified a conservation threshold that marks the boundary at which homologs can rescue the SMA phenotype. Smn from
Danio rerio
and
Xenopus laevis
significantly prevent disease, whereas Smn from
Drosophila melanogaster
,
Caenorhabditis elegans
, and
Schizosaccharomyces pombe
was significantly less efficacious. This phenotypic rescue correlated with correction of RNA processing defects induced by SMN deficiency and neuromuscular junction pathology. Based upon the sequence conservation in the rescuing homologs, a minimal
SMN
construct was designed consisting of exons 2, 3, and 6, which showed a partial rescue of the SMA phenotype. While a significant extension in survival was observed, the absence of a complete rescue suggests that while the core conserved region is essential, additional sequences contribute to the overall ability of the SMN protein to rescue disease pathology.</description><subject>14/63</subject><subject>42/44</subject><subject>631/378/1689/364</subject><subject>631/378/340</subject><subject>64/60</subject><subject>Animal models</subject><subject>Animals</subject><subject>Caenorhabditis elegans</subject><subject>Conserved sequence</subject><subject>Disease Models, Animal</subject><subject>Drosophila melanogaster</subject><subject>Evolution, Molecular</subject><subject>Exons</subject><subject>Genotype & phenotype</subject><subject>Humanities and Social Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Muscular Atrophy, Spinal - genetics</subject><subject>Muscular Atrophy, Spinal - metabolism</subject><subject>Neurodegenerative diseases</subject><subject>Neuromuscular diseases</subject><subject>Pathology</subject><subject>Phenotypes</subject><subject>RNA processing</subject><subject>Schizosaccharomyces</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SMN protein</subject><subject>Spinal muscular atrophy</subject><subject>Survival of Motor Neuron 1 Protein - genetics</subject><subject>Survival of Motor Neuron 1 Protein - metabolism</subject><subject>Xenopus laevis</subject><subject>Xenopus Proteins - genetics</subject><subject>Xenopus Proteins - metabolism</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOwzAQRS0EAgT9ARYoEhs2gfErcTZIqOIlFVgAa8tx7JIqjYudVIKvxzRQHgu8sK2ZM9czvggdYDjBQMVpYJgXIgVcpIwLQlKxgXYJMJ4SSsjmj_sOGoUwg7g4KRguttEOxSSjOIddNL7sW93VrlVNop-VV7ozvn5TH6HE2eTh9i4xS9f0q0DdJnPXBxP3yjRhAM730ZZVTTCjz3MPPV1ePI6v08n91c34fJJqlrMuxaUFYjHFWoCmOSbMaMtphbNM87wUhFpuBGQ2q0xZFBXYAkpVMUHjpHlM76GzQXfRl3NTadN2XjVy4eu58q_SqVr-zrT1s5y6pcwyoEBwFDj-FPDupTehk_M6aNM0qjVxLEkIx7EtIBDRoz_ozPU-_tKKAp7nBWWRIgOlvQvBG7tuBoP8sEkONslok1zZJEUsOvw5xrrky5QI0AEIMdVOjf9--x_Zd-zUnHQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Osman, Erkan Y.</creator><creator>Bolding, Madeline R.</creator><creator>Villalón, Eric</creator><creator>Kaifer, Kevin A.</creator><creator>Lorson, Zachary C.</creator><creator>Tisdale, Sarah</creator><creator>Hao, Yue</creator><creator>Conant, Gavin C.</creator><creator>Pires, J. Chris</creator><creator>Pellizzoni, Livio</creator><creator>Lorson, Christian L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5065-8906</orcidid><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0002-1023-2169</orcidid></search><sort><creationdate>20190701</creationdate><title>Functional characterization of SMN evolution in mouse models of SMA</title><author>Osman, Erkan Y. ; Bolding, Madeline R. ; Villalón, Eric ; Kaifer, Kevin A. ; Lorson, Zachary C. ; Tisdale, Sarah ; Hao, Yue ; Conant, Gavin C. ; Pires, J. Chris ; Pellizzoni, Livio ; Lorson, Christian L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1bf02f131c80c37124ecf53d166c57b823f5e806f6deb99d0f90bad4831597823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14/63</topic><topic>42/44</topic><topic>631/378/1689/364</topic><topic>631/378/340</topic><topic>64/60</topic><topic>Animal models</topic><topic>Animals</topic><topic>Caenorhabditis elegans</topic><topic>Conserved sequence</topic><topic>Disease Models, Animal</topic><topic>Drosophila melanogaster</topic><topic>Evolution, Molecular</topic><topic>Exons</topic><topic>Genotype & phenotype</topic><topic>Humanities and Social Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Muscular Atrophy, Spinal - genetics</topic><topic>Muscular Atrophy, Spinal - metabolism</topic><topic>Neurodegenerative diseases</topic><topic>Neuromuscular diseases</topic><topic>Pathology</topic><topic>Phenotypes</topic><topic>RNA processing</topic><topic>Schizosaccharomyces</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SMN protein</topic><topic>Spinal muscular atrophy</topic><topic>Survival of Motor Neuron 1 Protein - genetics</topic><topic>Survival of Motor Neuron 1 Protein - metabolism</topic><topic>Xenopus laevis</topic><topic>Xenopus Proteins - genetics</topic><topic>Xenopus Proteins - metabolism</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osman, Erkan Y.</creatorcontrib><creatorcontrib>Bolding, Madeline R.</creatorcontrib><creatorcontrib>Villalón, Eric</creatorcontrib><creatorcontrib>Kaifer, Kevin A.</creatorcontrib><creatorcontrib>Lorson, Zachary C.</creatorcontrib><creatorcontrib>Tisdale, Sarah</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><creatorcontrib>Conant, Gavin C.</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Pellizzoni, Livio</creatorcontrib><creatorcontrib>Lorson, Christian L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osman, Erkan Y.</au><au>Bolding, Madeline R.</au><au>Villalón, Eric</au><au>Kaifer, Kevin A.</au><au>Lorson, Zachary C.</au><au>Tisdale, Sarah</au><au>Hao, Yue</au><au>Conant, Gavin C.</au><au>Pires, J. Chris</au><au>Pellizzoni, Livio</au><au>Lorson, Christian L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional characterization of SMN evolution in mouse models of SMA</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>9472</spage><epage>12</epage><pages>9472-12</pages><artnum>9472</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all,
SMN
homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains. Using AAV9 to deliver Smn homologs to SMA mice, we identified a conservation threshold that marks the boundary at which homologs can rescue the SMA phenotype. Smn from
Danio rerio
and
Xenopus laevis
significantly prevent disease, whereas Smn from
Drosophila melanogaster
,
Caenorhabditis elegans
, and
Schizosaccharomyces pombe
was significantly less efficacious. This phenotypic rescue correlated with correction of RNA processing defects induced by SMN deficiency and neuromuscular junction pathology. Based upon the sequence conservation in the rescuing homologs, a minimal
SMN
construct was designed consisting of exons 2, 3, and 6, which showed a partial rescue of the SMA phenotype. While a significant extension in survival was observed, the absence of a complete rescue suggests that while the core conserved region is essential, additional sequences contribute to the overall ability of the SMN protein to rescue disease pathology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31263170</pmid><doi>10.1038/s41598-019-45822-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5065-8906</orcidid><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0002-1023-2169</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-07, Vol.9 (1), p.9472-12, Article 9472 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6603021 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 14/63 42/44 631/378/1689/364 631/378/340 64/60 Animal models Animals Caenorhabditis elegans Conserved sequence Disease Models, Animal Drosophila melanogaster Evolution, Molecular Exons Genotype & phenotype Humanities and Social Sciences Mice Mice, Knockout multidisciplinary Muscular Atrophy, Spinal - genetics Muscular Atrophy, Spinal - metabolism Neurodegenerative diseases Neuromuscular diseases Pathology Phenotypes RNA processing Schizosaccharomyces Science Science (multidisciplinary) SMN protein Spinal muscular atrophy Survival of Motor Neuron 1 Protein - genetics Survival of Motor Neuron 1 Protein - metabolism Xenopus laevis Xenopus Proteins - genetics Xenopus Proteins - metabolism Zebrafish Zebrafish - genetics Zebrafish Proteins - genetics Zebrafish Proteins - metabolism |
title | Functional characterization of SMN evolution in mouse models of SMA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20characterization%20of%20SMN%20evolution%20in%20mouse%20models%20of%20SMA&rft.jtitle=Scientific%20reports&rft.au=Osman,%20Erkan%20Y.&rft.date=2019-07-01&rft.volume=9&rft.issue=1&rft.spage=9472&rft.epage=12&rft.pages=9472-12&rft.artnum=9472&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-45822-8&rft_dat=%3Cproquest_pubme%3E2251124020%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250577934&rft_id=info:pmid/31263170&rfr_iscdi=true |