Functional characterization of SMN evolution in mouse models of SMA

Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-07, Vol.9 (1), p.9472-12, Article 9472
Hauptverfasser: Osman, Erkan Y., Bolding, Madeline R., Villalón, Eric, Kaifer, Kevin A., Lorson, Zachary C., Tisdale, Sarah, Hao, Yue, Conant, Gavin C., Pires, J. Chris, Pellizzoni, Livio, Lorson, Christian L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 9472
container_title Scientific reports
container_volume 9
creator Osman, Erkan Y.
Bolding, Madeline R.
Villalón, Eric
Kaifer, Kevin A.
Lorson, Zachary C.
Tisdale, Sarah
Hao, Yue
Conant, Gavin C.
Pires, J. Chris
Pellizzoni, Livio
Lorson, Christian L.
description Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all, SMN homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains. Using AAV9 to deliver Smn homologs to SMA mice, we identified a conservation threshold that marks the boundary at which homologs can rescue the SMA phenotype. Smn from Danio rerio and Xenopus laevis significantly prevent disease, whereas Smn from Drosophila melanogaster , Caenorhabditis elegans , and Schizosaccharomyces pombe was significantly less efficacious. This phenotypic rescue correlated with correction of RNA processing defects induced by SMN deficiency and neuromuscular junction pathology. Based upon the sequence conservation in the rescuing homologs, a minimal SMN construct was designed consisting of exons 2, 3, and 6, which showed a partial rescue of the SMA phenotype. While a significant extension in survival was observed, the absence of a complete rescue suggests that while the core conserved region is essential, additional sequences contribute to the overall ability of the SMN protein to rescue disease pathology.
doi_str_mv 10.1038/s41598-019-45822-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6603021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251124020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1bf02f131c80c37124ecf53d166c57b823f5e806f6deb99d0f90bad4831597823</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EAgT9ARYoEhs2gfErcTZIqOIlFVgAa8tx7JIqjYudVIKvxzRQHgu8sK2ZM9czvggdYDjBQMVpYJgXIgVcpIwLQlKxgXYJMJ4SSsjmj_sOGoUwg7g4KRguttEOxSSjOIddNL7sW93VrlVNop-VV7ozvn5TH6HE2eTh9i4xS9f0q0DdJnPXBxP3yjRhAM730ZZVTTCjz3MPPV1ePI6v08n91c34fJJqlrMuxaUFYjHFWoCmOSbMaMtphbNM87wUhFpuBGQ2q0xZFBXYAkpVMUHjpHlM76GzQXfRl3NTadN2XjVy4eu58q_SqVr-zrT1s5y6pcwyoEBwFDj-FPDupTehk_M6aNM0qjVxLEkIx7EtIBDRoz_ozPU-_tKKAp7nBWWRIgOlvQvBG7tuBoP8sEkONslok1zZJEUsOvw5xrrky5QI0AEIMdVOjf9--x_Zd-zUnHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250577934</pqid></control><display><type>article</type><title>Functional characterization of SMN evolution in mouse models of SMA</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Osman, Erkan Y. ; Bolding, Madeline R. ; Villalón, Eric ; Kaifer, Kevin A. ; Lorson, Zachary C. ; Tisdale, Sarah ; Hao, Yue ; Conant, Gavin C. ; Pires, J. Chris ; Pellizzoni, Livio ; Lorson, Christian L.</creator><creatorcontrib>Osman, Erkan Y. ; Bolding, Madeline R. ; Villalón, Eric ; Kaifer, Kevin A. ; Lorson, Zachary C. ; Tisdale, Sarah ; Hao, Yue ; Conant, Gavin C. ; Pires, J. Chris ; Pellizzoni, Livio ; Lorson, Christian L.</creatorcontrib><description>Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all, SMN homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains. Using AAV9 to deliver Smn homologs to SMA mice, we identified a conservation threshold that marks the boundary at which homologs can rescue the SMA phenotype. Smn from Danio rerio and Xenopus laevis significantly prevent disease, whereas Smn from Drosophila melanogaster , Caenorhabditis elegans , and Schizosaccharomyces pombe was significantly less efficacious. This phenotypic rescue correlated with correction of RNA processing defects induced by SMN deficiency and neuromuscular junction pathology. Based upon the sequence conservation in the rescuing homologs, a minimal SMN construct was designed consisting of exons 2, 3, and 6, which showed a partial rescue of the SMA phenotype. While a significant extension in survival was observed, the absence of a complete rescue suggests that while the core conserved region is essential, additional sequences contribute to the overall ability of the SMN protein to rescue disease pathology.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-45822-8</identifier><identifier>PMID: 31263170</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/63 ; 42/44 ; 631/378/1689/364 ; 631/378/340 ; 64/60 ; Animal models ; Animals ; Caenorhabditis elegans ; Conserved sequence ; Disease Models, Animal ; Drosophila melanogaster ; Evolution, Molecular ; Exons ; Genotype &amp; phenotype ; Humanities and Social Sciences ; Mice ; Mice, Knockout ; multidisciplinary ; Muscular Atrophy, Spinal - genetics ; Muscular Atrophy, Spinal - metabolism ; Neurodegenerative diseases ; Neuromuscular diseases ; Pathology ; Phenotypes ; RNA processing ; Schizosaccharomyces ; Science ; Science (multidisciplinary) ; SMN protein ; Spinal muscular atrophy ; Survival of Motor Neuron 1 Protein - genetics ; Survival of Motor Neuron 1 Protein - metabolism ; Xenopus laevis ; Xenopus Proteins - genetics ; Xenopus Proteins - metabolism ; Zebrafish ; Zebrafish - genetics ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.9472-12, Article 9472</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1bf02f131c80c37124ecf53d166c57b823f5e806f6deb99d0f90bad4831597823</citedby><cites>FETCH-LOGICAL-c474t-1bf02f131c80c37124ecf53d166c57b823f5e806f6deb99d0f90bad4831597823</cites><orcidid>0000-0002-5065-8906 ; 0000-0001-9682-2639 ; 0000-0002-1023-2169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603021/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603021/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31263170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osman, Erkan Y.</creatorcontrib><creatorcontrib>Bolding, Madeline R.</creatorcontrib><creatorcontrib>Villalón, Eric</creatorcontrib><creatorcontrib>Kaifer, Kevin A.</creatorcontrib><creatorcontrib>Lorson, Zachary C.</creatorcontrib><creatorcontrib>Tisdale, Sarah</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><creatorcontrib>Conant, Gavin C.</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Pellizzoni, Livio</creatorcontrib><creatorcontrib>Lorson, Christian L.</creatorcontrib><title>Functional characterization of SMN evolution in mouse models of SMA</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all, SMN homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains. Using AAV9 to deliver Smn homologs to SMA mice, we identified a conservation threshold that marks the boundary at which homologs can rescue the SMA phenotype. Smn from Danio rerio and Xenopus laevis significantly prevent disease, whereas Smn from Drosophila melanogaster , Caenorhabditis elegans , and Schizosaccharomyces pombe was significantly less efficacious. This phenotypic rescue correlated with correction of RNA processing defects induced by SMN deficiency and neuromuscular junction pathology. Based upon the sequence conservation in the rescuing homologs, a minimal SMN construct was designed consisting of exons 2, 3, and 6, which showed a partial rescue of the SMA phenotype. While a significant extension in survival was observed, the absence of a complete rescue suggests that while the core conserved region is essential, additional sequences contribute to the overall ability of the SMN protein to rescue disease pathology.</description><subject>14/63</subject><subject>42/44</subject><subject>631/378/1689/364</subject><subject>631/378/340</subject><subject>64/60</subject><subject>Animal models</subject><subject>Animals</subject><subject>Caenorhabditis elegans</subject><subject>Conserved sequence</subject><subject>Disease Models, Animal</subject><subject>Drosophila melanogaster</subject><subject>Evolution, Molecular</subject><subject>Exons</subject><subject>Genotype &amp; phenotype</subject><subject>Humanities and Social Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Muscular Atrophy, Spinal - genetics</subject><subject>Muscular Atrophy, Spinal - metabolism</subject><subject>Neurodegenerative diseases</subject><subject>Neuromuscular diseases</subject><subject>Pathology</subject><subject>Phenotypes</subject><subject>RNA processing</subject><subject>Schizosaccharomyces</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SMN protein</subject><subject>Spinal muscular atrophy</subject><subject>Survival of Motor Neuron 1 Protein - genetics</subject><subject>Survival of Motor Neuron 1 Protein - metabolism</subject><subject>Xenopus laevis</subject><subject>Xenopus Proteins - genetics</subject><subject>Xenopus Proteins - metabolism</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOwzAQRS0EAgT9ARYoEhs2gfErcTZIqOIlFVgAa8tx7JIqjYudVIKvxzRQHgu8sK2ZM9czvggdYDjBQMVpYJgXIgVcpIwLQlKxgXYJMJ4SSsjmj_sOGoUwg7g4KRguttEOxSSjOIddNL7sW93VrlVNop-VV7ozvn5TH6HE2eTh9i4xS9f0q0DdJnPXBxP3yjRhAM730ZZVTTCjz3MPPV1ePI6v08n91c34fJJqlrMuxaUFYjHFWoCmOSbMaMtphbNM87wUhFpuBGQ2q0xZFBXYAkpVMUHjpHlM76GzQXfRl3NTadN2XjVy4eu58q_SqVr-zrT1s5y6pcwyoEBwFDj-FPDupTehk_M6aNM0qjVxLEkIx7EtIBDRoz_ozPU-_tKKAp7nBWWRIgOlvQvBG7tuBoP8sEkONslok1zZJEUsOvw5xrrky5QI0AEIMdVOjf9--x_Zd-zUnHQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Osman, Erkan Y.</creator><creator>Bolding, Madeline R.</creator><creator>Villalón, Eric</creator><creator>Kaifer, Kevin A.</creator><creator>Lorson, Zachary C.</creator><creator>Tisdale, Sarah</creator><creator>Hao, Yue</creator><creator>Conant, Gavin C.</creator><creator>Pires, J. Chris</creator><creator>Pellizzoni, Livio</creator><creator>Lorson, Christian L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5065-8906</orcidid><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0002-1023-2169</orcidid></search><sort><creationdate>20190701</creationdate><title>Functional characterization of SMN evolution in mouse models of SMA</title><author>Osman, Erkan Y. ; Bolding, Madeline R. ; Villalón, Eric ; Kaifer, Kevin A. ; Lorson, Zachary C. ; Tisdale, Sarah ; Hao, Yue ; Conant, Gavin C. ; Pires, J. Chris ; Pellizzoni, Livio ; Lorson, Christian L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1bf02f131c80c37124ecf53d166c57b823f5e806f6deb99d0f90bad4831597823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14/63</topic><topic>42/44</topic><topic>631/378/1689/364</topic><topic>631/378/340</topic><topic>64/60</topic><topic>Animal models</topic><topic>Animals</topic><topic>Caenorhabditis elegans</topic><topic>Conserved sequence</topic><topic>Disease Models, Animal</topic><topic>Drosophila melanogaster</topic><topic>Evolution, Molecular</topic><topic>Exons</topic><topic>Genotype &amp; phenotype</topic><topic>Humanities and Social Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Muscular Atrophy, Spinal - genetics</topic><topic>Muscular Atrophy, Spinal - metabolism</topic><topic>Neurodegenerative diseases</topic><topic>Neuromuscular diseases</topic><topic>Pathology</topic><topic>Phenotypes</topic><topic>RNA processing</topic><topic>Schizosaccharomyces</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SMN protein</topic><topic>Spinal muscular atrophy</topic><topic>Survival of Motor Neuron 1 Protein - genetics</topic><topic>Survival of Motor Neuron 1 Protein - metabolism</topic><topic>Xenopus laevis</topic><topic>Xenopus Proteins - genetics</topic><topic>Xenopus Proteins - metabolism</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osman, Erkan Y.</creatorcontrib><creatorcontrib>Bolding, Madeline R.</creatorcontrib><creatorcontrib>Villalón, Eric</creatorcontrib><creatorcontrib>Kaifer, Kevin A.</creatorcontrib><creatorcontrib>Lorson, Zachary C.</creatorcontrib><creatorcontrib>Tisdale, Sarah</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><creatorcontrib>Conant, Gavin C.</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Pellizzoni, Livio</creatorcontrib><creatorcontrib>Lorson, Christian L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osman, Erkan Y.</au><au>Bolding, Madeline R.</au><au>Villalón, Eric</au><au>Kaifer, Kevin A.</au><au>Lorson, Zachary C.</au><au>Tisdale, Sarah</au><au>Hao, Yue</au><au>Conant, Gavin C.</au><au>Pires, J. Chris</au><au>Pellizzoni, Livio</au><au>Lorson, Christian L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional characterization of SMN evolution in mouse models of SMA</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>9472</spage><epage>12</epage><pages>9472-12</pages><artnum>9472</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all, SMN homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains. Using AAV9 to deliver Smn homologs to SMA mice, we identified a conservation threshold that marks the boundary at which homologs can rescue the SMA phenotype. Smn from Danio rerio and Xenopus laevis significantly prevent disease, whereas Smn from Drosophila melanogaster , Caenorhabditis elegans , and Schizosaccharomyces pombe was significantly less efficacious. This phenotypic rescue correlated with correction of RNA processing defects induced by SMN deficiency and neuromuscular junction pathology. Based upon the sequence conservation in the rescuing homologs, a minimal SMN construct was designed consisting of exons 2, 3, and 6, which showed a partial rescue of the SMA phenotype. While a significant extension in survival was observed, the absence of a complete rescue suggests that while the core conserved region is essential, additional sequences contribute to the overall ability of the SMN protein to rescue disease pathology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31263170</pmid><doi>10.1038/s41598-019-45822-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5065-8906</orcidid><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0002-1023-2169</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-07, Vol.9 (1), p.9472-12, Article 9472
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6603021
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 14/63
42/44
631/378/1689/364
631/378/340
64/60
Animal models
Animals
Caenorhabditis elegans
Conserved sequence
Disease Models, Animal
Drosophila melanogaster
Evolution, Molecular
Exons
Genotype & phenotype
Humanities and Social Sciences
Mice
Mice, Knockout
multidisciplinary
Muscular Atrophy, Spinal - genetics
Muscular Atrophy, Spinal - metabolism
Neurodegenerative diseases
Neuromuscular diseases
Pathology
Phenotypes
RNA processing
Schizosaccharomyces
Science
Science (multidisciplinary)
SMN protein
Spinal muscular atrophy
Survival of Motor Neuron 1 Protein - genetics
Survival of Motor Neuron 1 Protein - metabolism
Xenopus laevis
Xenopus Proteins - genetics
Xenopus Proteins - metabolism
Zebrafish
Zebrafish - genetics
Zebrafish Proteins - genetics
Zebrafish Proteins - metabolism
title Functional characterization of SMN evolution in mouse models of SMA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20characterization%20of%20SMN%20evolution%20in%20mouse%20models%20of%20SMA&rft.jtitle=Scientific%20reports&rft.au=Osman,%20Erkan%20Y.&rft.date=2019-07-01&rft.volume=9&rft.issue=1&rft.spage=9472&rft.epage=12&rft.pages=9472-12&rft.artnum=9472&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-45822-8&rft_dat=%3Cproquest_pubme%3E2251124020%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250577934&rft_id=info:pmid/31263170&rfr_iscdi=true