Polymer-Functionalised Nanograins of Mg-Doped Amorphous Calcium Carbonate via a Flow-Chemistry Approach
Calcareous biominerals typically feature a hybrid nanogranular structure consisting of calcium carbonate nanograins coated with organic matrices. This nanogranular organisation has a beneficial effect on the functionality of these bioceramics. In this feasibility study, we successfully employed a fl...
Gespeichert in:
Veröffentlicht in: | Materials 2019-06, Vol.12 (11), p.1818 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1818 |
container_title | Materials |
container_volume | 12 |
creator | Demmert, Benedikt Schinzel, Frank Schüßler, Martina Mondeshki, Mihail Kaschta, Joachim Schubert, Dirk W Jacob, Dorrit E Wolf, Stephan E |
description | Calcareous biominerals typically feature a hybrid nanogranular structure consisting of calcium carbonate nanograins coated with organic matrices. This nanogranular organisation has a beneficial effect on the functionality of these bioceramics. In this feasibility study, we successfully employed a flow-chemistry approach to precipitate Mg-doped amorphous calcium carbonate particles functionalized by negatively charged polyelectrolytes-either polyacrylates (PAA) or polystyrene sulfonate (PSS). We demonstrate that the rate of Mg incorporation and, thus, the ratio of the Mg dopant to calcium in the precipitated amorphous calcium carbonate (ACC), is flow rate dependent. In the case of the PAA-functionalized Mg-doped ACC, we further observed a weak flow rate dependence concerning the hydration state of the precipitate, which we attribute to incorporated PAA acting as a water sorbent; a behaviour which is not present in experiments with PSS and without a polymer. Thus, polymer-dependent phenomena can affect flow-chemistry approaches, that is, in syntheses of functionally graded materials by layer-deposition processes. |
doi_str_mv | 10.3390/ma12111818 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6601056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548692698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-e327ef24a10feddcf9ba9d6e81b48f69421850a1e9703659969537e7e095ca2b3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EolXphQ-AInFBSAGPnTj2BWm1ZQGp_DnA2Zo4k11XSRzspGi_Pa5aSsGXscY_P82bx9hz4G-kNPztiCAAQIN-xE7BGFWCqarHD-4n7DylK56PlKCFecpOJIBqag6nbP8tDMeRYrlbJ7f4MOHgE3XFF5zCPqKfUhH64vO-vAhzbm_GEOdDWFOxxcH5dcw1tvnXQsW1xwKL3RB-ldsDjT4t8Vhs5jkGdIdn7EmPQ6Lzu3rGfuzef99-LC-_fvi03VyWruJqKUmKhnpRIfCeus71pkXTKdLQVrpXphKga45ApuFS1dmiqWVDDXFTOxStPGPvbnXntR2pczQtEQc7Rz9iPNqA3v77MvmD3YdrqxQHXqss8OpOIIafK6XFZieOhgEnyr6tEAqE5krqjL78D70Ka8wbzFRdaWWEMjfU61vKxZBSpP5-GOD2JkL7N8IMv3g4_j36JzD5G6r3lvo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548692698</pqid></control><display><type>article</type><title>Polymer-Functionalised Nanograins of Mg-Doped Amorphous Calcium Carbonate via a Flow-Chemistry Approach</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Demmert, Benedikt ; Schinzel, Frank ; Schüßler, Martina ; Mondeshki, Mihail ; Kaschta, Joachim ; Schubert, Dirk W ; Jacob, Dorrit E ; Wolf, Stephan E</creator><creatorcontrib>Demmert, Benedikt ; Schinzel, Frank ; Schüßler, Martina ; Mondeshki, Mihail ; Kaschta, Joachim ; Schubert, Dirk W ; Jacob, Dorrit E ; Wolf, Stephan E</creatorcontrib><description>Calcareous biominerals typically feature a hybrid nanogranular structure consisting of calcium carbonate nanograins coated with organic matrices. This nanogranular organisation has a beneficial effect on the functionality of these bioceramics. In this feasibility study, we successfully employed a flow-chemistry approach to precipitate Mg-doped amorphous calcium carbonate particles functionalized by negatively charged polyelectrolytes-either polyacrylates (PAA) or polystyrene sulfonate (PSS). We demonstrate that the rate of Mg incorporation and, thus, the ratio of the Mg dopant to calcium in the precipitated amorphous calcium carbonate (ACC), is flow rate dependent. In the case of the PAA-functionalized Mg-doped ACC, we further observed a weak flow rate dependence concerning the hydration state of the precipitate, which we attribute to incorporated PAA acting as a water sorbent; a behaviour which is not present in experiments with PSS and without a polymer. Thus, polymer-dependent phenomena can affect flow-chemistry approaches, that is, in syntheses of functionally graded materials by layer-deposition processes.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12111818</identifier><identifier>PMID: 31167501</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acrylic resins ; Bioceramics ; Calcium carbonate ; Chemistry ; Experiments ; Feasibility studies ; Flow velocity ; Fourier transforms ; Functionally gradient materials ; Magnesium ; Microscopy ; Mineralization ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Polyelectrolytes ; Polymers ; Polystyrene resins ; Sorbents</subject><ispartof>Materials, 2019-06, Vol.12 (11), p.1818</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-e327ef24a10feddcf9ba9d6e81b48f69421850a1e9703659969537e7e095ca2b3</citedby><cites>FETCH-LOGICAL-c406t-e327ef24a10feddcf9ba9d6e81b48f69421850a1e9703659969537e7e095ca2b3</cites><orcidid>0000-0002-3747-8097 ; 0000-0003-4744-6627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601056/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601056/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31167501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demmert, Benedikt</creatorcontrib><creatorcontrib>Schinzel, Frank</creatorcontrib><creatorcontrib>Schüßler, Martina</creatorcontrib><creatorcontrib>Mondeshki, Mihail</creatorcontrib><creatorcontrib>Kaschta, Joachim</creatorcontrib><creatorcontrib>Schubert, Dirk W</creatorcontrib><creatorcontrib>Jacob, Dorrit E</creatorcontrib><creatorcontrib>Wolf, Stephan E</creatorcontrib><title>Polymer-Functionalised Nanograins of Mg-Doped Amorphous Calcium Carbonate via a Flow-Chemistry Approach</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Calcareous biominerals typically feature a hybrid nanogranular structure consisting of calcium carbonate nanograins coated with organic matrices. This nanogranular organisation has a beneficial effect on the functionality of these bioceramics. In this feasibility study, we successfully employed a flow-chemistry approach to precipitate Mg-doped amorphous calcium carbonate particles functionalized by negatively charged polyelectrolytes-either polyacrylates (PAA) or polystyrene sulfonate (PSS). We demonstrate that the rate of Mg incorporation and, thus, the ratio of the Mg dopant to calcium in the precipitated amorphous calcium carbonate (ACC), is flow rate dependent. In the case of the PAA-functionalized Mg-doped ACC, we further observed a weak flow rate dependence concerning the hydration state of the precipitate, which we attribute to incorporated PAA acting as a water sorbent; a behaviour which is not present in experiments with PSS and without a polymer. Thus, polymer-dependent phenomena can affect flow-chemistry approaches, that is, in syntheses of functionally graded materials by layer-deposition processes.</description><subject>Acrylic resins</subject><subject>Bioceramics</subject><subject>Calcium carbonate</subject><subject>Chemistry</subject><subject>Experiments</subject><subject>Feasibility studies</subject><subject>Flow velocity</subject><subject>Fourier transforms</subject><subject>Functionally gradient materials</subject><subject>Magnesium</subject><subject>Microscopy</subject><subject>Mineralization</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polyelectrolytes</subject><subject>Polymers</subject><subject>Polystyrene resins</subject><subject>Sorbents</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU9v1DAQxS0EolXphQ-AInFBSAGPnTj2BWm1ZQGp_DnA2Zo4k11XSRzspGi_Pa5aSsGXscY_P82bx9hz4G-kNPztiCAAQIN-xE7BGFWCqarHD-4n7DylK56PlKCFecpOJIBqag6nbP8tDMeRYrlbJ7f4MOHgE3XFF5zCPqKfUhH64vO-vAhzbm_GEOdDWFOxxcH5dcw1tvnXQsW1xwKL3RB-ldsDjT4t8Vhs5jkGdIdn7EmPQ6Lzu3rGfuzef99-LC-_fvi03VyWruJqKUmKhnpRIfCeus71pkXTKdLQVrpXphKga45ApuFS1dmiqWVDDXFTOxStPGPvbnXntR2pczQtEQc7Rz9iPNqA3v77MvmD3YdrqxQHXqss8OpOIIafK6XFZieOhgEnyr6tEAqE5krqjL78D70Ka8wbzFRdaWWEMjfU61vKxZBSpP5-GOD2JkL7N8IMv3g4_j36JzD5G6r3lvo</recordid><startdate>20190604</startdate><enddate>20190604</enddate><creator>Demmert, Benedikt</creator><creator>Schinzel, Frank</creator><creator>Schüßler, Martina</creator><creator>Mondeshki, Mihail</creator><creator>Kaschta, Joachim</creator><creator>Schubert, Dirk W</creator><creator>Jacob, Dorrit E</creator><creator>Wolf, Stephan E</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3747-8097</orcidid><orcidid>https://orcid.org/0000-0003-4744-6627</orcidid></search><sort><creationdate>20190604</creationdate><title>Polymer-Functionalised Nanograins of Mg-Doped Amorphous Calcium Carbonate via a Flow-Chemistry Approach</title><author>Demmert, Benedikt ; Schinzel, Frank ; Schüßler, Martina ; Mondeshki, Mihail ; Kaschta, Joachim ; Schubert, Dirk W ; Jacob, Dorrit E ; Wolf, Stephan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-e327ef24a10feddcf9ba9d6e81b48f69421850a1e9703659969537e7e095ca2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acrylic resins</topic><topic>Bioceramics</topic><topic>Calcium carbonate</topic><topic>Chemistry</topic><topic>Experiments</topic><topic>Feasibility studies</topic><topic>Flow velocity</topic><topic>Fourier transforms</topic><topic>Functionally gradient materials</topic><topic>Magnesium</topic><topic>Microscopy</topic><topic>Mineralization</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polyelectrolytes</topic><topic>Polymers</topic><topic>Polystyrene resins</topic><topic>Sorbents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demmert, Benedikt</creatorcontrib><creatorcontrib>Schinzel, Frank</creatorcontrib><creatorcontrib>Schüßler, Martina</creatorcontrib><creatorcontrib>Mondeshki, Mihail</creatorcontrib><creatorcontrib>Kaschta, Joachim</creatorcontrib><creatorcontrib>Schubert, Dirk W</creatorcontrib><creatorcontrib>Jacob, Dorrit E</creatorcontrib><creatorcontrib>Wolf, Stephan E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demmert, Benedikt</au><au>Schinzel, Frank</au><au>Schüßler, Martina</au><au>Mondeshki, Mihail</au><au>Kaschta, Joachim</au><au>Schubert, Dirk W</au><au>Jacob, Dorrit E</au><au>Wolf, Stephan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer-Functionalised Nanograins of Mg-Doped Amorphous Calcium Carbonate via a Flow-Chemistry Approach</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-06-04</date><risdate>2019</risdate><volume>12</volume><issue>11</issue><spage>1818</spage><pages>1818-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Calcareous biominerals typically feature a hybrid nanogranular structure consisting of calcium carbonate nanograins coated with organic matrices. This nanogranular organisation has a beneficial effect on the functionality of these bioceramics. In this feasibility study, we successfully employed a flow-chemistry approach to precipitate Mg-doped amorphous calcium carbonate particles functionalized by negatively charged polyelectrolytes-either polyacrylates (PAA) or polystyrene sulfonate (PSS). We demonstrate that the rate of Mg incorporation and, thus, the ratio of the Mg dopant to calcium in the precipitated amorphous calcium carbonate (ACC), is flow rate dependent. In the case of the PAA-functionalized Mg-doped ACC, we further observed a weak flow rate dependence concerning the hydration state of the precipitate, which we attribute to incorporated PAA acting as a water sorbent; a behaviour which is not present in experiments with PSS and without a polymer. Thus, polymer-dependent phenomena can affect flow-chemistry approaches, that is, in syntheses of functionally graded materials by layer-deposition processes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31167501</pmid><doi>10.3390/ma12111818</doi><orcidid>https://orcid.org/0000-0002-3747-8097</orcidid><orcidid>https://orcid.org/0000-0003-4744-6627</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2019-06, Vol.12 (11), p.1818 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6601056 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Acrylic resins Bioceramics Calcium carbonate Chemistry Experiments Feasibility studies Flow velocity Fourier transforms Functionally gradient materials Magnesium Microscopy Mineralization Nanoparticles NMR Nuclear magnetic resonance Polyelectrolytes Polymers Polystyrene resins Sorbents |
title | Polymer-Functionalised Nanograins of Mg-Doped Amorphous Calcium Carbonate via a Flow-Chemistry Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer-Functionalised%20Nanograins%20of%20Mg-Doped%20Amorphous%20Calcium%20Carbonate%20via%20a%20Flow-Chemistry%20Approach&rft.jtitle=Materials&rft.au=Demmert,%20Benedikt&rft.date=2019-06-04&rft.volume=12&rft.issue=11&rft.spage=1818&rft.pages=1818-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12111818&rft_dat=%3Cproquest_pubme%3E2548692698%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548692698&rft_id=info:pmid/31167501&rfr_iscdi=true |